二面角求解方法(共10页).doc
《二面角求解方法(共10页).doc》由会员分享,可在线阅读,更多相关《二面角求解方法(共10页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二面角的作与求 求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。4、投影法:利用s投影面=s被投影面这个公式对于
2、斜面三角形,任意多边形都成立,是求二面角的好方法。尤其对无棱问题5异面直线距离法:EF2=m2+n2+d22mnPCBAE例1:若p是所在平面外一点,而和都是边长为2的正三角形,PA=,求二面角P-BC-A的大小。分析:由于这两个三角形是全等的三角形,故采用定义法解:取BC的中点E,连接AE、PEAC=AB,PB=PCAE BC,PE BC为二面角P-BC-A的平面角在中AE=PE=,PA=900二面角P-BC-A的平面角为900。例2:已知是正三角形,平面ABC且PA=AB=a,求二面角A-PC-B的大小。 思维二面角的大小是由二面角的平面角来度量的,本题可利用三垂线定理(逆)来作平面角,还
3、可以用射影面积公式或异面直线上两点EPCBAF间距离公式求二面角的平面角。解1:(三垂线定理法)取AC的中点E,连接BE,过E做EFPC,连接BF 平面ABC,PA平面PAC平面PAC平面ABC, 平面PAC平面ABC=AC图1BE平面PAC由三垂线定理知BFPC为二面角A-PC-B的平面角设PA=1,E为AC的中点,BE=,EF=tan=arctan解2:(三垂线定理法)PCBAEFM取BC的中点E,连接AE,PE过A做AFPE, FMPC,连接FMAB=AC,PB=PCAEBC,PEBCBC平面PAE,BC平面PBC图2平面PAE平面PBC, 平面PAE平面PBC=PE由三垂线定理知AMP
4、C为二面角A-PC-B的平面角设PA=1,AM=,AF=sin=PCBAE=argsin解3:(投影法)过B作BEAC于E,连结PE 平面ABC,PA平面PAC图3平面PAC平面ABC, 平面PAC平面ABC=ACBE平面PAC是在平面PAC上的射影设PA=1,则PB=PC=,AB=1,由射影面积公式得,,解4:(异面直线距离法)EPCBAD过A作ADPC,BEPC交PC分别于D、E设PA=1,则AD=,PB=PC=图4BE=,CE=,DE=由异面直线两点间距离公式得AB2=AD2+BE2+DE2-2ADBE,=点评本题给出了求平面角的几种方法,应很好掌握。例3:二面角的大小为,A是它内部的一
5、点,AB,AC,B、C为垂足。(1) 求证:平面ABC,平面ABC(2) 当AB=4cm,AC=6cm时求BC的长及A到EF的距离。分析:本题采用作棱的垂面法找二面角的平面角ABCD解:(1)设过 ABC的平面交平面于BD,交平面于CDAB,AB平面ABC平面ABC,同理平面ABC(2)ABABEF同理ACEFEF平面ABDCBDEF, CD EF=BC=cm有正弦定理得点A到EF的距离为:d=cm 二面角的求法一、复习引入:1、什么是二面角及其平面角?范围是什么?从一条直线出发的两个半平面所成的图形叫做二面角,记作:二面角l。以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,
6、这两条射线所成的角叫做二面角的平面角。范围: 2、二面角出现的状态形式有哪些? 竖立式 横卧式2、二面角的类型及基本方法(1)四种常规几何作求法定义法 垂面法; 三垂线法; 射影面积法=S射影多边形/S多边形(2)向量法:设和分别为平面的法向量,二面角的大小为,向量 、的夹角为,如图: 结论:设和分别为平面的法向量,二面角的大小为,向量 、的夹角为,则有或 结论:一般地,若设分别是平面的法向量,则平面与平面所成的二面角的计算公式是: 或 ,其中锐角、钝角根据图形确定。二、例题讲解:以锥体为载体,对求角的问题进行研究例1、如图,在底面是一直角梯形的四棱锥S-ABCD中, ADBC,ABC=90,
7、SA平面AC,SA=AB=BC=1,AD= .求面SCD与面SAB所成的角的大小。解法1:可用射影面积法来求,这里只要求出SSCD与SSAB即可,图1SDCBA故所求的二面角应满足= = 。点评:(1)若利用射影面积法求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.(2)由学生讨论解决,教师根据学生的解答情况进行引导、明确学生的解答。解法2:(三垂线定理法)解:延长CD、BA交于点E,连结SE,SE即平面CSD与平面BSA的交线.又DA平面SAB,过A点作SE的垂线交于F.如图.ABCDESADBC且ADBC ADEBCE EAABSA又SAAE SAE为等腰直角三角形,F为中点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二面角 求解 方法 10
限制150内