《CIGS太阳电池》PPT课件.ppt
《《CIGS太阳电池》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《CIGS太阳电池》PPT课件.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、什么是太阳能电池?什么是太阳能电池?太阳能电池太阳能电池:又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。半导体的能带结构半导体的能带结构在半导体物理学中我们知道由于电子的共有化运动产生能级分裂,能级分裂进而形成能带根据电子先填充低能这个原理,下面一个能带能填满电子,我们称之为满带或价带;上面一个能带是空的,称为导带;中间隔以禁带价带中的电子一旦受到外部能量的激发,就会跃迁至导带成为自由电子,且在
2、价带留下一个空位。这个空位可由价带中邻键上的电子来占据,而这个电子移动所留下的新的空位又可以由其它电子来填补。这样,我们可以看成是空位在依次地移动,等效于带正电荷的粒子朝着与电子运动方向相反的方向移动,称它为空穴。半导体的费米能级半导体的费米能级N型半导体:在硅晶体中掺入P(磷原子),当磷原子与周围四个硅原子形成共价键时,还多了一个电子,这个电子容易挣脱磷原子的束缚形成自由电子,而磷原子失去电子后成为不能移动的正电中心。故多子为电子,少子为空穴。P型半导体:在硅晶体中掺入B(硼原子),当硼原子与周围四个硅原子形成共价键时,还缺少一个电子,必须从硅原子中夺取一个价电子,于是就在硅晶体的共价键中产
3、生一个空穴,而硼原子接受一个电子后,成为了负电中心。P型半导体中多子为空穴,少子为电子。本征半导体的费米能级Efi大致位于禁带中线Ei处。N型半导体的费米能级Efn位于禁带中央以上;掺杂浓度愈高,费米能级离禁带中央愈远,愈靠近导带底。P型半导体的费米能级Efp位于禁带中央位置以下;掺杂浓度愈高,费米能级离禁带中央愈远,愈靠近价带顶。太太阳阳能能电电池基本原理池基本原理太阳能电池是由电性质不同的n型半导体和p型半导体连接合成,一边是p区,一边是n区,在两个相互接触的界面附近形成一个结叫p-n结,结区内形成内建电场,成为电荷运动的势垒。太太阳阳能能电电池基本原理池基本原理当太阳光入射到太阳电池表面
4、上后,所吸收得能量大于禁带宽度,在p-n结中产生电子-空穴对,在p-n结内建电场作用下,空穴向p区移动,电子向n区移动,从而在p区形成空穴积累,在n区形成电子积累。若电路闭合,形成电流。太太阳阳电电池池发展总体趋势发展总体趋势随着能源危机与环境污染的日趋严重,开发可再生清洁能源成为国际范围内的重大战略课题之一!l太阳能是取之不尽、用之不竭,最清洁、最大的可再生能源l太阳能将在未来的能源结构中占据主导地位l太阳能各种利用方式中,太阳电池发电发展最快、最具活力和最受瞩目太阳能电池发展现状太阳能电池发展现状太阳电池现状:太阳电池现状:已发展出三代已发展出三代第一代第一代晶硅太阳电池包括单晶硅与多晶硅
5、电池优点:技术成熟,转化效率较高,目前在工业生产和市场上占主导地位。缺点:需要消耗高纯的晶硅;成本高;原料制取的能耗高、污染重;第二代第二代薄膜太阳电池包括a:Si、CdTe、CIGS和DSSC电池优点:耗材较少、易于柔性化制作。不足:研究较晚,许多基础问题不明、技术尚不成熟;第三代第三代薄膜太阳电池如叠层、热光伏、量子点等电池特点:有前景,但大都停留在概念阶段、少有产品、实用性不明;太阳能的分类(按材料)太阳能的分类(按材料)CIGS太太阳阳电电池池的优点的优点 CIGS薄膜太阳电池:薄膜太阳电池:用料少、效率高、稳定性好、易于柔性化和卷绕式生产,具有良好发展前景,成为研发热点。在第二代薄膜
6、太阳电池中转换效率最高(20.3%)比功率高,柔性基底的可达1100W/kg以上可制造柔性电池组件,易于以卷对卷连续化生产CIGS太太阳阳电电池的池的优优点点发展非真空沉积法或全干法技术,可较大幅度降低成本稳定性好,弱光性能好使用寿命长,抗辐射能力强柔性化,应用领域更为广泛CIGS太太阳阳电电池的池的缺点缺点原料供应的问题原料供应的问题:主要是:主要是In(铟)和(铟)和Se(硒)(硒)原料问题是CIS和CIGS电池大规模生产不可避免的致命因素,铟全球储量约10万吨,硒约80万吨,均属稀有珍贵元素。国外曾计算,如以效率10的电池计算,人类如全面使用CIGS光电池发电供应能源,可能只有数年光景可
7、用。一旦大量生产这类电池,恐怕铟和硒就会涨到钻石的价格上去,Nano声称的低成本也就不复存在。显然,原料的珍稀实际上已经提前判定CIS和CIGS今后只能成为目前太阳能电池的补充,而不能大规模应用成为主流。此外,CIGS电池的缓冲层CdS有潜在毒害,制造程序复杂,投资成本高。CIGS太太阳阳电电池池发发展展历历程程1953年,合成CuInSe2(CIS)单晶,1967年研究相图1974年,Bell实验室制备出第一块单晶CIS/CdS电池,效率为5%;1975年达12%1976年,Maine大学第一块薄膜CIS/CdS电池,效率6.6%1981年,波音获得双层CIS/CdS薄膜电池,效率9.5%;
8、1982年,CdxZn1-xS代替CdS获得效率10%,自此,人们开始重视CIS并开展大量研究CIGS太太阳阳电电池池发发展展历历程程1985年,CdS厚度从3m减至50nm,并引入低阻ZnO作为窗口层,增强短波响应,这一结构进一步发展成目前的经典结构1988年,ARCO采用预制层硒化法获得14.1%效率1980-1990年代,在CIS中掺Ga和S来改善性能;1989年,波音制备出效率为12.9%的CIGS电池1990年代后,美国NREL实验室基于三步共蒸发法,获17.7%-18.8%-19.2-19.9%效率,并一直保持世界纪录2010年,德国ZSW基于蒸发法,超过NREL将效率提高20.1
9、%,此后又提高到20.3%CIGS太太阳阳电电池结构池结构CIGS太太阳阳电电池池结结构构基基板(最底层):板(最底层):通常使用的材料为玻璃(Glass)或是具有可挠性的金属箔(如不锈钢箔、铜箔、铝合金箔)或一些高分子如Polyimide(聚酰亚胺)。背电极(钼背电极(钼(Mo)导电层):导电层):基材上会溅镀一层0.51.0m的Mo背电极以利于空穴传导。与CIS的晶格失配较小且热膨胀系数与CIS比较接近,可形成良好的欧姆接触。CIGS 光吸收层光吸收层:吸收区,弱p型,其空间电荷区为主要工作区。CIGS为四元化合物可调控能隙大小。n-type半导体半导体CdS层:层:降低带隙的不连续性,缓
10、冲晶格不匹配问题,帮助电子有效传导。i-ZnO异质结异质结N层层:防止CIGS太阳能电池在进行发电过程中,因分流的问题导致组件效能下降。高阻,与CdS构成n区。可提高开路电压。AZnO窗口层:窗口层:溅镀上AZnO作为透明导电层窗口。具有低阻,高透,欧姆接触,可减少表面再结合的特性。MgF2防反射层防反射层:增加入射率。顶电极:顶电极:m,即构成一个铜铟镓硒薄膜太阳能电池。CIGS太阳电池工作原理太阳电池工作原理 原理原理:阳光照在电池表面,穿过顶电极,缓冲层,被铜铟镓硒吸收产生载流子,在内建电场的作用下吸收层接近硫化镉区域,不同电荷的载流子分离,负电荷走向顶电极,正电荷走向背电极,由此,太阳
11、能便源源不断的转化为可供我们使用的电能,之所以具有较高的效率是因为铜铟镓硒材料对太阳光的吸收能力极强。背背电电极极Mo背电极作用背电极作用:对外输出电池功率背电极选材要求:与基底结合紧密,不易脱落利于CIGS生长附着,并形成欧姆接触良好的导电性为什么选择Mo?曾采用Cu、Au、Al、Ni、Al、Mo、Pt只有Ni和Mo不会与CIGS产生相互扩散Mo较Ni在高温下更加稳定Mo的制备方法目前Mo主要采用直流磁控溅射制备普遍采用双Mo工艺:溅射气压高,电阻率较高,会增加电池的串联电阻;溅射气压低,Mo层与薄膜的粘附性差,硒化时薄膜容易脱落 吸收层吸收层CIGSCIGS薄膜在太阳电池中的作用薄膜在太阳
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CIGS太阳电池 CIGS 太阳电池 PPT 课件
限制150内