偏心受压构件承载力.ppt
《偏心受压构件承载力.ppt》由会员分享,可在线阅读,更多相关《偏心受压构件承载力.ppt(80页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章 偏心受压构件承载力7.1 概述第七章第七章 偏心受压构件承载力偏心受压构件承载力7.1 7.1 概述概述7.1.1 简介简介 压力和弯矩共同作用下的截面受力性能 Behaviors under flexure and axial load压弯构件 偏心受压构件第七章 偏心受压构件承载力7.1 概述压力和弯矩共同作用下的截面受力性能 Behaviors under flexure and axial load压弯构件 偏心受压构件偏心距偏心距e0=0时时?当当e0时,即时,即N=0,?偏心受压构件的受力性能和破坏形态界于偏心受压构件的受力性能和破坏形态界于轴心受压轴心受压构件和构件和受弯
2、受弯构件构件之间。之间。第七章 偏心受压构件承载力7.1 概述第八章 受压构件材料强度材料强度:混凝土混凝土:受压构件的承载力主要取决于混凝土强度,一般应采:受压构件的承载力主要取决于混凝土强度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱的混凝土强用强度等级较高的混凝土。目前我国一般结构中柱的混凝土强度等级常用度等级常用C30C40,在高层建筑中,在高层建筑中,C50C60级混凝土也经级混凝土也经常使用。常使用。钢筋钢筋:通常采用通常采用级和级和级钢筋,不宜过高。级钢筋,不宜过高。?截面形状和尺寸截面形状和尺寸:采用矩形截面,单层工业厂房的预制柱常采用工字形截面。采用矩形截面,单层工
3、业厂房的预制柱常采用工字形截面。圆形截面主要用于桥墩、桩和公共建筑中的柱。圆形截面主要用于桥墩、桩和公共建筑中的柱。柱的截面尺寸不宜过小,一般应控制在柱的截面尺寸不宜过小,一般应控制在l0/b30及及l0/h25。当柱截面的边长在当柱截面的边长在800mm以下时,一般以以下时,一般以50mm为模数,边为模数,边长在长在800mm以上时,以以上时,以100mm为模数。为模数。7.1.2 构造要求构造要求 7.1 概述第八章 受压构件纵向钢筋纵向钢筋:纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝土受压脆性
4、破坏的缓冲于素混凝土柱,纵筋不能起到防止混凝土受压脆性破坏的缓冲作用。同时考虑到实际结构中存在偶然附加弯矩的作用(垂直作用。同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。了受压钢筋的最小配筋率。规范规定,轴心受压构件、偏心受压构件全部纵向钢筋规范规定,轴心受压构件、偏心受压构件全部纵向钢筋的配筋率不应小于的配筋率不应小于0.5%;当混凝土强度等级大于当混凝土强度等级大于C50时不应小时不应小于于0.6%;一侧受压钢筋的配筋率不应小于一侧受压钢筋的配筋率不应小于0
5、.2%,受拉钢筋最受拉钢筋最小配筋率的要求同受弯构件。小配筋率的要求同受弯构件。另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质量,另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质量,全部纵筋配筋率不宜超过全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率按全部纵向钢筋的配筋率按r r=(As+As)/A计算,一侧受压钢筋计算,一侧受压钢筋的配筋率按的配筋率按r r=As/A计算,其中计算,其中A为构件全截面面积。为构件全截面面积。7.1 概述第八章 受压构件配筋构造:配筋构造:柱中纵向受力钢筋的的直径柱中纵向受力钢筋的的直径d不宜小于不宜小于12mm,且选配钢筋时,且选配钢筋时宜根数少而粗
6、,但对矩形截面根数不得少于宜根数少而粗,但对矩形截面根数不得少于4根,圆形截面根根,圆形截面根数不宜少于数不宜少于8根,且应沿周边均匀布置。根,且应沿周边均匀布置。纵向钢筋的保护层厚度要求见表纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径,且不小于钢筋直径d。当柱为竖向浇筑混凝土时,纵筋的净距不小于当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm;对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。截面各边纵筋的中距不应大于截面各边纵筋的中距不应大于350mm。当。当h600mm时,在柱时,在柱侧面应设置直径侧面应设置直径1016m
7、m的纵向构造钢筋,并相应设置复合的纵向构造钢筋,并相应设置复合箍筋或拉筋。箍筋或拉筋。7.1 概述第八章 受压构件7.1 概述第八章 受压构件箍箍 筋筋:受受压压构构件件中中箍箍筋筋应应采采用用封封闭闭式式,其其直直径径不不应应小小于于d/4,且且不不小小于于6mm,此处,此处d为纵筋的最大直径。为纵筋的最大直径。箍箍筋筋间间距距不不应应大大于于400mm,也也不不应应大大于于截截面面短短边边尺尺寸寸;对对绑绑扎扎钢钢筋筋骨骨架架,箍箍筋筋间间距距不不应应大大于于15d;对对焊焊接接钢钢筋筋骨骨架架不不应应大于大于20d。d为纵筋的最小直径。为纵筋的最小直径。当当柱柱中中全全部部纵纵筋筋的的配
8、配筋筋率率超超过过3%,箍箍筋筋直直径径不不宜宜小小于于8mm,且且箍箍筋筋末末端端应应应应作作成成135的的弯弯钩钩,弯弯钩钩末末端端平平直直段段长长度度不不应应小小于于10箍箍筋筋直直径径,或或焊焊成成封封闭闭式式;箍箍筋筋间间距距不不应应大大于于10倍倍纵筋最小直径,也不应大于纵筋最小直径,也不应大于200mm。当当柱柱截截面面短短边边大大于于400mm,且且各各边边纵纵筋筋配配置置根根数数超超过过多多于于3根根时时,或或当当柱柱截截面面短短边边不不大大于于400mm,但但各各边边纵纵筋筋配配置置根根数超过多于数超过多于4根时,应设置复合箍筋。根时,应设置复合箍筋。对对截截面面形形状状复
9、复杂杂的的柱柱,不不得得采采用用具具有有内内折折角角的的箍箍筋筋,以以避避免免箍筋受拉时使折角处混凝土破损。箍筋受拉时使折角处混凝土破损。7.1 概述第八章 受压构件7.1 概述7.2.1 偏心受压构件正截面的破坏形态偏心受压构件正截面的破坏形态偏心受压构件的破坏形态与偏心受压构件的破坏形态与偏心距偏心距e0和和纵向钢筋配筋率纵向钢筋配筋率有关有关1、受拉破坏、受拉破坏 tensile failureM较大,较大,N较小较小偏心距偏心距e0较大较大As配筋合适配筋合适第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态7.2 7.2 偏心受压构件的破坏形态偏心受压构件的破坏形态 fyAs
10、fyAsNe07.2.1 偏心受压构件正截面的破坏形态偏心受压构件正截面的破坏形态偏心受压构件的破坏形态与偏心受压构件的破坏形态与偏心距偏心距e0和和纵向钢筋配筋率纵向钢筋配筋率有关有关1、受拉破坏、受拉破坏 tensile failure第七章 偏心受压构件承载力7.2 7.2 偏心受压构件的破坏形态偏心受压构件的破坏形态 截面受拉侧混凝土较早出现裂缝,截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展的应力随荷载增加发展较快,较快,首先达到屈服首先达到屈服。此后,裂缝迅速开展,受压区高度减小此后,裂缝迅速开展,受压区高度减小 最后受压侧钢筋最后受压侧钢筋As 受压屈服,压区混凝土压碎而
11、达到破坏。受压屈服,压区混凝土压碎而达到破坏。这种破坏具有明显预兆,变形能力较大,破坏特征与配有受这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋承载力主要取决于受拉侧钢筋。形成这种破坏的条件是:形成这种破坏的条件是:偏心距偏心距e0较大,且受拉侧纵向钢筋较大,且受拉侧纵向钢筋配筋率合适配筋率合适,通常称为,通常称为大偏心受压大偏心受压。7.2 偏心受压构件的破坏形态2、受压破坏、受压破坏compressive failure产生受压破坏的条件有两种情况:产生受压破坏的条件有两种情况:当相对偏心距当相对偏心距e0/h0较小较
12、小或虽然相对偏心距或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时较大,但受拉侧纵向钢筋配置较多时As太太多多第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态2、受压破坏、受压破坏compressive failure产生受压破坏的条件有两种情况:产生受压破坏的条件有两种情况:当相对偏心距当相对偏心距e0/h0较小较小或虽然相对偏心距或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时较大,但受拉侧纵向钢筋配置较多时第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态 截面受压侧混凝土和钢筋的受力较大,截面受压侧混凝土和钢筋的受力较大,而受拉侧钢筋应力较小,而受拉侧
13、钢筋应力较小,当相对偏心距当相对偏心距e0/h0很小时,很小时,受拉侧受拉侧还可能出现受压情况。还可能出现受压情况。截面最后是由于受压区混凝土首先压碎而达到破坏,截面最后是由于受压区混凝土首先压碎而达到破坏,承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高度较大,受拉侧钢筋高度较大,受拉侧钢筋未达到未达到受拉屈服受拉屈服,破坏具有脆性性质。,破坏具有脆性性质。第二种情况在设计应予避免第二种情况在设计应予避免,因此受压破坏一般为偏心距较,因此受压破坏一般为偏心距较小的情况,故常称为小的情况,故常称为小偏心受压小偏心受压。2、受压破坏、受压
14、破坏compressive failure产生受压破坏的条件有两种情况:产生受压破坏的条件有两种情况:当相对偏心距当相对偏心距e0/h0较小较小或虽然相对偏心距或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时较大,但受拉侧纵向钢筋配置较多时As太太多多第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态7.2.2 大小偏压的判别方法大小偏压的判别方法1、界限破坏、界限破坏 即即受拉钢筋屈服受拉钢筋屈服与与受压区混凝土边缘极限压应变受压区混凝土边缘极限压应变e ecu同时
15、达到同时达到 与适筋梁和超筋梁的界限情况类似。与适筋梁和超筋梁的界限情况类似。u界限破坏仍属于界限破坏仍属于受拉破坏受拉破坏。第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态2、截面应变分析及大小偏压的判别、截面应变分析及大小偏压的判别AsAsbcdefghxcxcbaaa大偏压破坏大偏压破坏界限破坏界限破坏小偏压破坏小偏压破坏syysNb)为受压破坏;)为受压破坏;第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态对于对称配筋截面,达到界对于对称配筋截面,达到界限破坏时的轴力限破坏时的轴力Nb是一致的。是一致的。如截面尺寸和材料强度保持如截面尺寸和材料强度保持不变,不变,Nu-
16、Mu相关曲线随配相关曲线随配筋率的增加而向外侧增大;筋率的增加而向外侧增大;第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态7.2.3 偏心受压构件纵向弯曲的影响偏心受压构件纵向弯曲的影响1、附加偏心距、附加偏心距 由于施工误差、计算偏差及材料的不均匀等原因,实际工程由于施工误差、计算偏差及材料的不均匀等原因,实际工程中不存在理想的轴心受压构件。为考虑这些因素的不利影响,中不存在理想的轴心受压构件。为考虑这些因素的不利影响,引入引入附加偏心距附加偏心距ea(accidental eccentricity),即在正截面压弯即在正截面
17、压弯承载力计算中,偏心距取计算偏心距承载力计算中,偏心距取计算偏心距e0=M/N与附加偏心距与附加偏心距ea之之和,称为和,称为初始偏心距初始偏心距ei(initial eccentricity),参考以往工程经验和国外规范,附加偏心距参考以往工程经验和国外规范,附加偏心距ea取取20mm与与h/30 两者中的较大值,此处两者中的较大值,此处h是指偏心方向的截面尺寸。是指偏心方向的截面尺寸。二、偏心距增大系数二、偏心距增大系数 由于侧向挠曲变形,轴向力将由于侧向挠曲变形,轴向力将产生产生二阶效应二阶效应,引起附加弯矩,引起附加弯矩 对于长细比较大的构件,二阶对于长细比较大的构件,二阶效应引起附
18、加弯矩不能忽略。效应引起附加弯矩不能忽略。图示典型偏心受压柱,跨中侧图示典型偏心受压柱,跨中侧向挠度为向挠度为 f。对跨中截面,轴力对跨中截面,轴力N的的偏心距偏心距为为ei+f,即跨中截面的弯矩为,即跨中截面的弯矩为 M=N(ei+f)。在截面和初始偏心距相同的情在截面和初始偏心距相同的情况下,柱的况下,柱的长细比长细比l0/h不同,侧不同,侧向挠度向挠度 f 的大小不同,影响程度的大小不同,影响程度会有很大差别,将产生不同的破会有很大差别,将产生不同的破坏类型。坏类型。第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态对于对于长细比长细比l0/h8的的短柱短柱第七章 偏心受压构件承载
19、力7.2 偏心受压构件的破坏形态 侧向挠度侧向挠度 f 与初始偏心距与初始偏心距ei相比很小相比很小,柱跨中弯矩柱跨中弯矩M=N(ei+f)随轴随轴力力N的增加基本呈线性增长,的增加基本呈线性增长,直至达到截面承载力极限状直至达到截面承载力极限状态产生破坏。态产生破坏。对短柱可忽略挠度对短柱可忽略挠度f影响。影响。长细比长细比l0/h=830的的长柱长柱 虽然最终在虽然最终在M和和N的共同作用下达到截面承载力极限状态,的共同作用下达到截面承载力极限状态,但轴向承载力明显低于同样截面和初始偏心距情况下的短柱。但轴向承载力明显低于同样截面和初始偏心距情况下的短柱。因此,对于中长柱,在设计中应考虑附
20、加挠度因此,对于中长柱,在设计中应考虑附加挠度 f 对弯矩增大对弯矩增大的影响。的影响。第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态 f 与与ei相比已不能忽略。相比已不能忽略。f 随轴力增大而增大,柱跨中随轴力增大而增大,柱跨中弯矩弯矩M=N(ei+f)的增长速的增长速度大于轴力度大于轴力N的增长速度,的增长速度,即即M随随N 的增加呈明显的非的增加呈明显的非线性增长线性增长侧向挠度侧向挠度 f 的影响已很大的影响已很大在未达到截面承载力极限状在未达到截面承载力极限状态之前,侧向挠度态之前,侧向挠度 f 已呈已呈不稳不稳定定发展发展即柱的轴向荷载最大值发生在即柱的轴向荷载最大值发
21、生在荷载增长曲线与截面承载力荷载增长曲线与截面承载力Nu-Mu相关曲线相交之前相关曲线相交之前这种破坏为失稳破坏,应进这种破坏为失稳破坏,应进行专门计算行专门计算第七章 偏心受压构件承载力长细比长细比l0/h 30的的细长柱细长柱7.2 偏心受压构件的破坏形态偏心距增大系数偏心距增大系数,取h=1.1h0l0第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态偏心距增大系数偏心距增大系数,取hh0l0第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态 有侧移结构,其二阶效有侧移结构,其二阶效应主要是由水平荷载产生应主要是由水平荷载产生的侧移引起的。的侧移引起的。精确考虑这种二阶效应精
22、确考虑这种二阶效应较为复杂,一般需通过考较为复杂,一般需通过考虑二阶效应的结构分析方虑二阶效应的结构分析方法进行计算。法进行计算。由于混凝土结构开裂的由于混凝土结构开裂的影响,在考虑二阶效应的影响,在考虑二阶效应的结构分析时应将结构构件结构分析时应将结构构件的弹性抗弯刚度乘以折减的弹性抗弯刚度乘以折减修正系数:修正系数:对梁取修正系数,对梁取修正系数,对柱取修正系数。对柱取修正系数。对已采用考虑二阶效应的弹性分析方法确定结构内力时,以下对已采用考虑二阶效应的弹性分析方法确定结构内力时,以下受压构件正截面承载力计算公式中的受压构件正截面承载力计算公式中的h hei应用应用(M/N+ea)代替。代
23、替。第七章 偏心受压构件承载力7.2 偏心受压构件的破坏形态 偏心受压正截面受力分析方法与受弯情况是相同的,偏心受压正截面受力分析方法与受弯情况是相同的,即仍采用以即仍采用以平截面假定平截面假定为基础的计算理论,为基础的计算理论,根据混凝土和钢筋的应力根据混凝土和钢筋的应力-应变关系,即可分析截面应变关系,即可分析截面在压力和弯矩共同作用下受力全过程。在压力和弯矩共同作用下受力全过程。对于正截面承载力的计算,同样可按受弯情况,对对于正截面承载力的计算,同样可按受弯情况,对受压区混凝土采用等效矩形应力图,受压区混凝土采用等效矩形应力图,等效矩形应力图等效矩形应力图的强度为的强度为a a1 1 f
24、c,等效矩形应力图的,等效矩形应力图的高度与中和轴高度的比值为高度与中和轴高度的比值为b b 1 1。第七章 偏心受压构件承载力7.3 矩形截面偏心受压构件正截面承载力计算7.3 7.3 矩形截面偏心受压构件正截面承载力计算矩形截面偏心受压构件正截面承载力计算一、当一、当x x x xb时时 受拉破坏受拉破坏(大偏心受压大偏心受压)第七章 偏心受压构件承载力7.3.1 正截面承载力公式正截面承载力公式7.3 矩形截面偏心受压构件正截面承载力计算适用条件适用条件:二、当二、当x x x xb时时受压破坏受压破坏(小偏心受压小偏心受压)第七章 偏心受压构件承载力7.3 矩形截面偏心受压构件正截面承
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 偏心 受压 构件 承载力
限制150内