动力学普遍方程及拉格朗日方程.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《动力学普遍方程及拉格朗日方程.ppt》由会员分享,可在线阅读,更多相关《动力学普遍方程及拉格朗日方程.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、动力学普遍方程动力学普遍方程 和拉格朗日方程和拉格朗日方程 引引 言言 动力学普遍方程动力学普遍方程 拉格朗日方程拉格朗日方程 拉格朗日方程的初积分拉格朗日方程的初积分 结论与讨论结论与讨论 经典动力学的两个发展方面经典动力学的两个发展方面 拓宽研究领域拓宽研究领域拓宽研究领域拓宽研究领域矢量动力学矢量动力学矢量动力学矢量动力学又称为又称为又称为又称为牛顿欧拉动力学牛顿欧拉动力学牛顿欧拉动力学牛顿欧拉动力学牛顿运动定律由单个自由质点牛顿运动定律由单个自由质点牛顿运动定律由单个自由质点牛顿运动定律由单个自由质点 受约束质点和质点系受约束质点和质点系受约束质点和质点系受约束质点和质点系(以达朗贝尔
2、原理为基础以达朗贝尔原理为基础以达朗贝尔原理为基础以达朗贝尔原理为基础)欧拉将牛顿运动定律欧拉将牛顿运动定律欧拉将牛顿运动定律欧拉将牛顿运动定律 刚体和理想流体刚体和理想流体刚体和理想流体刚体和理想流体 寻求新的表达形式寻求新的表达形式寻求新的表达形式寻求新的表达形式将虚位移原理和达朗贝尔原理综合应用于动力学将虚位移原理和达朗贝尔原理综合应用于动力学将虚位移原理和达朗贝尔原理综合应用于动力学将虚位移原理和达朗贝尔原理综合应用于动力学 建立分析力学的新体系建立分析力学的新体系建立分析力学的新体系建立分析力学的新体系拉格朗日力学拉格朗日力学拉格朗日力学拉格朗日力学 考察由考察由考察由考察由N N个
3、质点的、具有理想约束的系统。根据个质点的、具有理想约束的系统。根据个质点的、具有理想约束的系统。根据个质点的、具有理想约束的系统。根据达朗贝尔原理,有达朗贝尔原理,有达朗贝尔原理,有达朗贝尔原理,有主动力主动力主动力主动力约束力约束力约束力约束力惯性力惯性力惯性力惯性力 令系统有任意一组虚位移令系统有任意一组虚位移令系统有任意一组虚位移令系统有任意一组虚位移系统的总虚功为系统的总虚功为系统的总虚功为系统的总虚功为动力学普遍方程动力学普遍方程系统的总虚功为系统的总虚功为系统的总虚功为系统的总虚功为利用理想约束条件利用理想约束条件利用理想约束条件利用理想约束条件得到得到得到得到 动力学普遍方程动力
4、学普遍方程动力学普遍方程动力学普遍方程 任意瞬时作用于具有理想、双面约束的系统上的任意瞬时作用于具有理想、双面约束的系统上的任意瞬时作用于具有理想、双面约束的系统上的任意瞬时作用于具有理想、双面约束的系统上的主动力与惯性力在系统的任意虚位移上的元功之和主动力与惯性力在系统的任意虚位移上的元功之和主动力与惯性力在系统的任意虚位移上的元功之和主动力与惯性力在系统的任意虚位移上的元功之和等于零。等于零。等于零。等于零。动力学普遍方程的直角坐标形式动力学普遍方程的直角坐标形式动力学普遍方程的直角坐标形式动力学普遍方程的直角坐标形式动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 适用于具有理想
5、约束或双面约束的系统。适用于具有理想约束或双面约束的系统。适用于具有理想约束或双面约束的系统。适用于具有理想约束或双面约束的系统。动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 既适用于具有定常约束的系统,也适用于既适用于具有定常约束的系统,也适用于既适用于具有定常约束的系统,也适用于既适用于具有定常约束的系统,也适用于具有非定常约束的系统。具有非定常约束的系统。具有非定常约束的系统。具有非定常约束的系统。动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 既适用于具有完整约束的系统,也适用于既适用于具有完整约束的系统,也适用于既适用于具有完整约束的系统,也适用于既适用于具有完
6、整约束的系统,也适用于具有非完整约束的系统。具有非完整约束的系统。具有非完整约束的系统。具有非完整约束的系统。动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 既适用于具有有势力的系统,也适用于具有既适用于具有有势力的系统,也适用于具有既适用于具有有势力的系统,也适用于具有既适用于具有有势力的系统,也适用于具有无势力的系统。无势力的系统。无势力的系统。无势力的系统。动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 主要应用于求解动力学第二类问主要应用于求解动力学第二类问主要应用于求解动力学第二类问主要应用于求解动力学第二类问题,即:已知主动力求系统的运动规律。题,即:已知主动力
7、求系统的运动规律。题,即:已知主动力求系统的运动规律。题,即:已知主动力求系统的运动规律。应用应用应用应用 动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 求解系统运动规律时,重求解系统运动规律时,重求解系统运动规律时,重求解系统运动规律时,重要的是正确分析运动,并在系统上施加惯性力。要的是正确分析运动,并在系统上施加惯性力。要的是正确分析运动,并在系统上施加惯性力。要的是正确分析运动,并在系统上施加惯性力。由于由于由于由于 动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 中不包含约束力,因此,不中不包含约束力,因此,不中不包含约束力,因此,不中不包含约束力,因此,不需要解
8、除约束,也不需要将系统拆开。需要解除约束,也不需要将系统拆开。需要解除约束,也不需要将系统拆开。需要解除约束,也不需要将系统拆开。应用应用应用应用 动力学普遍方程动力学普遍方程动力学普遍方程动力学普遍方程 ,需要正确分析主动力和,需要正确分析主动力和,需要正确分析主动力和,需要正确分析主动力和惯性力作用点的虚位移,并正确计算相应的虚功。惯性力作用点的虚位移,并正确计算相应的虚功。惯性力作用点的虚位移,并正确计算相应的虚功。惯性力作用点的虚位移,并正确计算相应的虚功。动力学普遍方程的应用动力学普遍方程的应用例例例例 题题题题 1 1已知已知已知已知:m m ,R,fR,f ,。求:求:求:求:圆
9、盘纯滚时质心的加速度。圆盘纯滚时质心的加速度。圆盘纯滚时质心的加速度。圆盘纯滚时质心的加速度。CmgaCF FIRIR MMICIC x x解:解:解:解:1 1、分析运动,施加惯性力、分析运动,施加惯性力、分析运动,施加惯性力、分析运动,施加惯性力 2 2、本系统有一个自由度,、本系统有一个自由度,、本系统有一个自由度,、本系统有一个自由度,令其有一虚位移令其有一虚位移令其有一虚位移令其有一虚位移 x x。3 3、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程其中:其中:其中:其中:例例例例 题题题题 2 2离心调速器离心调速器离心调速器离心调速器已知:已知:
10、已知:已知:m m1 1球球球球A A、B B 的质量;的质量;的质量;的质量;m m2 2重锤重锤重锤重锤C C 的质量;的质量;的质量;的质量;l l杆件的长度;杆件的长度;杆件的长度;杆件的长度;O O1 1 y y1 1轴的旋转角速度。轴的旋转角速度。轴的旋转角速度。轴的旋转角速度。求:求:求:求:的关系。的关系。的关系。的关系。B BA AC Cl ll ll ll l O O1 1x x1 1y y1 1解:解:解:解:不考虑摩擦力,这一系统不考虑摩擦力,这一系统不考虑摩擦力,这一系统不考虑摩擦力,这一系统的约束为理想约束;系统具有一的约束为理想约束;系统具有一的约束为理想约束;系
11、统具有一的约束为理想约束;系统具有一个自由度。取广义坐标个自由度。取广义坐标个自由度。取广义坐标个自由度。取广义坐标 q q=1 1、分析运动、确定惯性力、分析运动、确定惯性力、分析运动、确定惯性力、分析运动、确定惯性力 球球球球A A、B B绕绕绕绕 y y轴等速转动;重锤静止不动。轴等速转动;重锤静止不动。轴等速转动;重锤静止不动。轴等速转动;重锤静止不动。球球球球A A、B B的惯性力为的惯性力为的惯性力为的惯性力为F FI IB BF FI IA Am m1 1g gm m2 2g gm m1 1g g B BA AC Cl ll ll ll l O O1 1x x1 1y y1 1F
12、 FI IB BF FI IA Am m1 1g gm m2 2g gm m1 1g g r rC C r rB B r rA A2 2、令系统有一虚位移、令系统有一虚位移、令系统有一虚位移、令系统有一虚位移 。A A、B B、C C 三处的三处的三处的三处的虚位移分别为虚位移分别为虚位移分别为虚位移分别为 r rA A、r rB B、r rC C。3 3、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程根据几何关系,有根据几何关系,有根据几何关系,有根据几何关系,有 B BA AC Cl ll ll ll l O O1 1x x1 1y y1 1F FI IB
13、BF FI IA Am m1 1g gm m2 2g gm m1 1g g r rC C r rB B r rA A3 3、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程x xO Oy yC C2 2D D求:求:求:求:1 1、三棱柱后退的加速度、三棱柱后退的加速度、三棱柱后退的加速度、三棱柱后退的加速度a a1 1;2 2、圆轮质心、圆轮质心、圆轮质心、圆轮质心C C2 2相对于三棱相对于三棱相对于三棱相对于三棱 柱加速度柱加速度柱加速度柱加速度a ar r。C C1 1A AC CB B 例题例题例题例题3 3 质量为质量为质量为质量为m m1 1的三棱柱
14、的三棱柱的三棱柱的三棱柱ABCABC通过滚轮搁置在光滑的水平面上。通过滚轮搁置在光滑的水平面上。通过滚轮搁置在光滑的水平面上。通过滚轮搁置在光滑的水平面上。质量为质量为质量为质量为m m2 2、半径为、半径为、半径为、半径为R R的均质圆轮沿的均质圆轮沿的均质圆轮沿的均质圆轮沿三棱柱的斜面三棱柱的斜面三棱柱的斜面三棱柱的斜面ABAB无滑动地滚下。无滑动地滚下。无滑动地滚下。无滑动地滚下。解:解:解:解:1 1、分析运动、分析运动、分析运动、分析运动三棱柱作平动,加速度为三棱柱作平动,加速度为三棱柱作平动,加速度为三棱柱作平动,加速度为 a a1 1。圆轮作平面运动,质心的牵连圆轮作平面运动,质
15、心的牵连圆轮作平面运动,质心的牵连圆轮作平面运动,质心的牵连加速度为加速度为加速度为加速度为a ae e=a a1 1 ;质心的相对加质心的相对加质心的相对加质心的相对加速度为速度为速度为速度为a ar r;圆轮的角加速度为圆轮的角加速度为圆轮的角加速度为圆轮的角加速度为 2 2。a a1 1a ae ea ar r 2 2x xO Oy yC C2 2D DC C1 1A AC CB B a a1 1 2 2m m1 1g gm m2 2 g gF FI I1 1F FI I 2 e 2 eF FI I 2 r 2 rMMI2I2a ae ea ar r解:解:解:解:2 2、施加惯性力、施
16、加惯性力、施加惯性力、施加惯性力解:解:解:解:3 3、确定虚位移、确定虚位移、确定虚位移、确定虚位移 考察三棱柱和圆盘组成的考察三棱柱和圆盘组成的考察三棱柱和圆盘组成的考察三棱柱和圆盘组成的系统,系统具有两个自由度。系统,系统具有两个自由度。系统,系统具有两个自由度。系统,系统具有两个自由度。第一组第一组第一组第一组第二组第二组第二组第二组 二自由度系统具有两组虚二自由度系统具有两组虚二自由度系统具有两组虚二自由度系统具有两组虚位移:位移:位移:位移:x x x xO Oy yC C2 2D DC C1 1A AC CB B m m1 1g gm m2 2 g gF FI I1 1F FI
17、I 2 e 2 eF FI I 2 r 2 rMMI2I2 解:解:解:解:4 4、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程令:令:令:令:x xO Oy yC C2 2D DC C1 1A AC CB B m m1 1g gm m2 2 g gF FI I1 1F FI I 2 e 2 eF FI I 2 r 2 rMMI2I2解:解:解:解:4 4、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程、应用动力学普遍方程令:令:令:令:x x 解:解:解:解:5 5、求解联立方程、求解联立方程、求解联立方程、求解联立方程拉格朗日拉格朗日(Lagr
18、ange)方程方程 由由由由N N个质点所个质点所个质点所个质点所组成的质点系组成的质点系组成的质点系组成的质点系主主主主 动动动动 力力力力虚虚虚虚 位位位位 移移移移广义坐标广义坐标广义坐标广义坐标 第第第第i i个质个质个质个质点的位矢点的位矢点的位矢点的位矢由动力学普遍方程,得由动力学普遍方程,得由动力学普遍方程,得由动力学普遍方程,得 广义力广义力广义力广义力第一个第一个第一个第一个LagrangeLagrange经典关系经典关系经典关系经典关系(消点消点消点消点)对任意一个广义坐标对任意一个广义坐标对任意一个广义坐标对任意一个广义坐标 q qj j 求偏导数求偏导数求偏导数求偏导数
19、 如果将位矢对任意一个广义坐标如果将位矢对任意一个广义坐标如果将位矢对任意一个广义坐标如果将位矢对任意一个广义坐标 q qj j 求偏导数,再对时间求求偏导数,再对时间求求偏导数,再对时间求求偏导数,再对时间求导数,则得到导数,则得到导数,则得到导数,则得到第二个拉格朗日关系式第二个拉格朗日关系式第二个拉格朗日关系式第二个拉格朗日关系式此即此即此即此即拉格朗日方程拉格朗日方程拉格朗日方程拉格朗日方程,或称为,或称为,或称为,或称为第二类拉格朗日方程。第二类拉格朗日方程。第二类拉格朗日方程。第二类拉格朗日方程。如果作用在系统上的主动力都是有势力,根据有势力的广义主如果作用在系统上的主动力都是有势
20、力,根据有势力的广义主如果作用在系统上的主动力都是有势力,根据有势力的广义主如果作用在系统上的主动力都是有势力,根据有势力的广义主动力动力动力动力引入拉格朗日函数引入拉格朗日函数引入拉格朗日函数引入拉格朗日函数L LT TV V得到得到得到得到主动力为有势力的拉格朗日方程主动力为有势力的拉格朗日方程主动力为有势力的拉格朗日方程主动力为有势力的拉格朗日方程 对于只具有完整约束、自由度为对于只具有完整约束、自由度为对于只具有完整约束、自由度为对于只具有完整约束、自由度为 N N 的系统,可以得到的系统,可以得到的系统,可以得到的系统,可以得到由由由由 N N 个拉格朗日方程组成的方程组。个拉格朗日
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动力学 普遍 方程 拉格朗日
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内