高分子化学第七章活性聚合.ppt
《高分子化学第七章活性聚合.ppt》由会员分享,可在线阅读,更多相关《高分子化学第七章活性聚合.ppt(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章第七章 活性聚合活性聚合 10/29/20227.1 概述概述活性聚合概念活性聚合概念 不不存存在在链链转转移移和和链链终终止止的的聚聚合合称称为为活活性性聚聚合合。为为了了保保证证所所有有的的活活性性中中心心同同步步进进行行链链增增长长反反应应而而获获得得窄窄分分子子量量分分布布的的聚聚合合物物,活活性性聚聚合一般还要求链引发速率大于链增长速率。合一般还要求链引发速率大于链增长速率。典型的活性聚合具备以下特征:典型的活性聚合具备以下特征:(1)聚合产物的数均分子量与)聚合产物的数均分子量与单体转化率呈线性增长关系;单体转化率呈线性增长关系;(2)当单体转化率达)当单体转化率达100%后
2、,后,向聚合体系中加入新单体,聚合向聚合体系中加入新单体,聚合反应继续进行,数均分子量进一反应继续进行,数均分子量进一步增加,并仍与单体转化率成步增加,并仍与单体转化率成正比;正比;10/29/2022(3 3)聚合产物分子量具有单分散性,即)聚合产物分子量具有单分散性,即 1 1(4 4)聚合产物的数均聚合度应等于每个活性中心上加成的单体)聚合产物的数均聚合度应等于每个活性中心上加成的单体数,即消耗掉的单体浓度与活性中心浓度之比:数,即消耗掉的单体浓度与活性中心浓度之比:因此活性聚合又称因此活性聚合又称计量聚合计量聚合。有些聚合体系并不是完全不存在链转移和链终止反应,但相对有些聚合体系并不是
3、完全不存在链转移和链终止反应,但相对于链增长反应而言可以忽略不计,分子量在一定范围内可控,明显于链增长反应而言可以忽略不计,分子量在一定范围内可控,明显具有活性聚合的特征。为了与真正意义上的活性聚合相区别,把这具有活性聚合的特征。为了与真正意义上的活性聚合相区别,把这类聚合称为类聚合称为活性活性/可控聚合可控聚合。这就大大扩展了活性聚合的概念。这就大大扩展了活性聚合的概念。Xn=f M已反应已反应/I0 =f M0/I0(单体转化率(单体转化率100%)f 为为每个聚合物分子所消耗的引发剂分子数每个聚合物分子所消耗的引发剂分子数10/29/2022活性聚合是活性聚合是1956年美国科学家年美国
4、科学家Szware首先发现首先发现:在无水、无在无水、无氧、无杂质、低温条件下,以氧、无杂质、低温条件下,以THF为溶剂、萘钠为引发剂,进行为溶剂、萘钠为引发剂,进行苯乙烯阴离子聚合,得到的聚合物溶液在低温、高真空条件下存苯乙烯阴离子聚合,得到的聚合物溶液在低温、高真空条件下存放数月后,再加入苯乙烯单体,聚合反应可继续进行,得到分子放数月后,再加入苯乙烯单体,聚合反应可继续进行,得到分子量更高的聚苯乙烯。若加入第二种单体丁二烯,则得到苯乙烯量更高的聚苯乙烯。若加入第二种单体丁二烯,则得到苯乙烯-丁二烯嵌段共聚物。根据以上实验结果,丁二烯嵌段共聚物。根据以上实验结果,Szware等人第一次明等人
5、第一次明确提出了阴离子型无链终止、无链转移的聚合反应,即活性聚合确提出了阴离子型无链终止、无链转移的聚合反应,即活性聚合的概念。因为所得聚合物在单体全部耗尽后仍具有引发聚合活性,的概念。因为所得聚合物在单体全部耗尽后仍具有引发聚合活性,因此他们同时提出了因此他们同时提出了活性聚合物活性聚合物的概念。迄今为止活性聚合已从的概念。迄今为止活性聚合已从最早的阴离子聚合扩展到其它如阳离子、自由基、配位等链式聚最早的阴离子聚合扩展到其它如阳离子、自由基、配位等链式聚合。合。10/29/20227.1.2 活性聚合的动力学特征活性聚合的动力学特征 在理想的活性聚合中,在理想的活性聚合中,Rtr=Rt=0,
6、且,且RiRp,即由链引发反应,即由链引发反应很快定量形成活性中心,并同步发生链增长,体系中产生的聚合物很快定量形成活性中心,并同步发生链增长,体系中产生的聚合物的浓度与活性中心浓度以及引发剂浓度相等,聚合速率与单体浓度的浓度与活性中心浓度以及引发剂浓度相等,聚合速率与单体浓度呈呈一级动力学关系一级动力学关系:将上式积分后可得:将上式积分后可得:与反应时间与反应时间t t呈线性关系,即聚合体系的链增长活呈线性关系,即聚合体系的链增长活性中心浓度为一常数,即不存在链终止、链转移反应,这也可以作性中心浓度为一常数,即不存在链终止、链转移反应,这也可以作为一动力学特征来判断聚合反应是否是活性聚合。为
7、一动力学特征来判断聚合反应是否是活性聚合。10/29/20227.2 活性阴离子聚合活性阴离子聚合活性阴离子聚合的特点活性阴离子聚合的特点 阴阴离离子子聚聚合合,尤尤其其是是非非极极性性单单体体如如苯苯乙乙烯烯、丁丁二二烯烯等等的的聚聚合合,假假若若聚聚合合体体系系很很干干净净的的话话,本本身身是是没没有有链链转转移移和和链链终终止止反反应应的的,即即是是活活性性聚聚合合。相相对对于于其其它它链链式式聚聚合合,阴阴离离子子聚聚合合是是比比较较容容易易实实现现活活性性聚聚合合的的,这这也也是是为为什什么么活活性性聚聚合合首首先先是是通通过过阴阴离离子子聚聚合合方方法法实实现现的原因。的原因。但是
8、对于丙烯酸酯、甲基乙烯酮、丙烯腈等极性单体的阴离子但是对于丙烯酸酯、甲基乙烯酮、丙烯腈等极性单体的阴离子聚合,情况要复杂一些。这些单体中的极性取代基(酯基、酮基、聚合,情况要复杂一些。这些单体中的极性取代基(酯基、酮基、腈基)容易与聚合体系中的亲核性物质如引发剂或增长链阴离子等腈基)容易与聚合体系中的亲核性物质如引发剂或增长链阴离子等发生副反应而导致链终止。以甲基丙烯酸甲酯的阴离子聚合为例,发生副反应而导致链终止。以甲基丙烯酸甲酯的阴离子聚合为例,已观察到以下几种亲核取代副反应:已观察到以下几种亲核取代副反应:10/29/2022因此与非极性单体相比,极性单体难以实现活性阴离子聚合。因此与非极
9、性单体相比,极性单体难以实现活性阴离子聚合。10/29/2022极性单体的活性阴离子聚合极性单体的活性阴离子聚合 为了实现极性单体的活性阴离子聚合,必须使活性中心稳定化为了实现极性单体的活性阴离子聚合,必须使活性中心稳定化而清除以上介绍的副反应,主要途径有以下两种:而清除以上介绍的副反应,主要途径有以下两种:(1)使用立体阻碍较大的引发剂)使用立体阻碍较大的引发剂 1,1-二苯基已基锂、三苯基甲基锂等引发剂,立体阻碍大、反应二苯基已基锂、三苯基甲基锂等引发剂,立体阻碍大、反应活性较低,用它们引发甲基丙烯酸甲酯阴离子聚合时,可以避免引活性较低,用它们引发甲基丙烯酸甲酯阴离子聚合时,可以避免引发剂
10、与单体中羰基的亲核加成的副反应。同时选择较低的聚合温度发剂与单体中羰基的亲核加成的副反应。同时选择较低的聚合温度(如(如-78),还可完全避免活性端基),还可完全避免活性端基“反咬反咬”戊环而终止的副反戊环而终止的副反应,实现活性聚合。应,实现活性聚合。1,1-1,1-二苯基已基锂二苯基已基锂 三苯基甲基锂三苯基甲基锂10/29/2022(2)在体系中添加配合物)在体系中添加配合物 将将一一些些配配合合物物如如金金属属烷烷氧氧化化合合物物(LiOR)、无无机机盐盐(LiCl)、烷烷基基铝铝(R3Al)以以及及冠冠醚醚等等,添添加加到到极极性性单单体体的的阴阴离离子子聚聚合合体体系系中中,可可使
11、使引引发发活活性性中中心心和和链链增增长长活活性性中中心心稳稳定定化化,实实现现活活性性聚聚合合。这这种种在在配配合合物物存存在在下下的的阴阴离离子子活活性性聚聚合合称称为为配配体体化化阴阴离离子子聚聚合合(Ligated anionic polymerization),它它是是目目前前实实现现极极性性单单体体阴阴离离子子活活性性聚聚合合的的最最有有力力手手段段,较较上上途途径径(1)相相比比,单单体体适适用用范范围围更广。更广。配合物的作用机理被认为是它可以与引发活性种、链增长活性配合物的作用机理被认为是它可以与引发活性种、链增长活性种(包括阴离子和金属反离子)络合,形成单一而稳定的活性中心
12、,种(包括阴离子和金属反离子)络合,形成单一而稳定的活性中心,同时这种络合作用增大了活性链末端的空间位阻,可减少或避免活同时这种络合作用增大了活性链末端的空间位阻,可减少或避免活性链的反咬终止等副反应的发生。性链的反咬终止等副反应的发生。10/29/20227.3 活性阳离子聚合活性阳离子聚合 在在1956年年Szwarc开开发发出出活活性性阴阴离离子子聚聚合合后后,人人们们就就开开始始向向往往实实现现同同是是离离子子机机理理的的活活性性阳阳离离子子聚聚合合,但但长长期期以以来来成成效效不不大大。直直到到1985年年,Higashimura、Kennedy先先后后首首先先报报导导了了乙乙烯烯基
13、基醚醚、异异丁烯的活性阳离子聚合,开辟了阳离子聚合研究的崭新篇章。丁烯的活性阳离子聚合,开辟了阳离子聚合研究的崭新篇章。活性阳离子聚合原理活性阳离子聚合原理 在乙烯基单体的阳离子聚合中,链增长活性中心碳阳离子稳定性在乙烯基单体的阳离子聚合中,链增长活性中心碳阳离子稳定性极差,特别是极差,特别是-位上质子氢酸性较强,易被单体或反离子夺取而发位上质子氢酸性较强,易被单体或反离子夺取而发生链转移生链转移:10/29/2022阳离子活性中心这一固有的副反应被认为是实现活性阳离子聚阳离子活性中心这一固有的副反应被认为是实现活性阳离子聚合的主要障碍。因此要实现活性阳离子聚合,除保证聚合体系非常合的主要障碍
14、。因此要实现活性阳离子聚合,除保证聚合体系非常干净、不含有水等能导致不可逆链终止的亲核杂质之外,最关键的干净、不含有水等能导致不可逆链终止的亲核杂质之外,最关键的是是设法使本身不稳定的增长链碳阳离子稳定化,抑制设法使本身不稳定的增长链碳阳离子稳定化,抑制-质子的转质子的转移反应移反应。在离子型聚合体系中,往往存在多种活性中心,离子对和自由在离子型聚合体系中,往往存在多种活性中心,离子对和自由离子,处于动态平衡之中:离子,处于动态平衡之中:10/29/2022自由离子的活性虽高但不稳定,在具有较高的链增长反应速率自由离子的活性虽高但不稳定,在具有较高的链增长反应速率的同时,链转移速率也较快,对应
15、的聚合过程是不可控的的同时,链转移速率也较快,对应的聚合过程是不可控的(非活性非活性聚合聚合)。离子对的活性决定于碳阳离子和反离子之间相互作用力的大小:离子对的活性决定于碳阳离子和反离子之间相互作用力的大小:相互作用力越大,二者结合越牢固,活性越小但稳定性越大;相反相互作用力越大,二者结合越牢固,活性越小但稳定性越大;相反相互作用越小,活性越大但稳定性越小。相互作用越小,活性越大但稳定性越小。当碳阳离子与反离子的相互作用适中时,离子对的反应性与稳当碳阳离子与反离子的相互作用适中时,离子对的反应性与稳定性这对矛盾达到统一,便可使增长活性种有足够的稳定性,避免定性这对矛盾达到统一,便可使增长活性种
16、有足够的稳定性,避免副反应的发生,同时又保留一定的正电性,具有相当的亲电反应性副反应的发生,同时又保留一定的正电性,具有相当的亲电反应性而使单体顺利加成聚合,这就是实现活性阳离子聚合的基本原理。而使单体顺利加成聚合,这就是实现活性阳离子聚合的基本原理。为此主要有三条途径,以烷基乙烯基醚的活性阳离子聚合为例为此主要有三条途径,以烷基乙烯基醚的活性阳离子聚合为例加以阐述加以阐述:10/29/2022(1)设计引发体系以获得适当亲核性的反离子)设计引发体系以获得适当亲核性的反离子 Higashimura等用等用HI/I2引发体系,首次实现了烷基乙烯基醚活引发体系,首次实现了烷基乙烯基醚活性阳离子聚合
17、:性阳离子聚合:活性聚合物活性聚合物 反离子反离子具有适当的亲核性,使碳阳离子稳定化并同时又具具有适当的亲核性,使碳阳离子稳定化并同时又具有一定的链增长活性,从而实现活性聚合。有一定的链增长活性,从而实现活性聚合。在上聚合反应中,真正在上聚合反应中,真正的引发剂应是乙烯基醚单体与的引发剂应是乙烯基醚单体与HI原位加成的产物原位加成的产物(1),I2为活化剂。为活化剂。10/29/2022 (2)添加)添加Lewis碱稳定碳阳离子碱稳定碳阳离子 在上乙烯基醚聚合体系中,若用较强的在上乙烯基醚聚合体系中,若用较强的Lewis酸如酸如SnCl4等代替等代替I2,聚合反应加快,但产物分子量分布很宽,是
18、非活性聚合。此时,聚合反应加快,但产物分子量分布很宽,是非活性聚合。此时若在体系中添加醚(如若在体系中添加醚(如THF)等弱)等弱Lewis碱后,聚合反应变缓,但碱后,聚合反应变缓,但显示典型活性聚合特征。显示典型活性聚合特征。Lewis碱的作用机理被认为是对碳阳离子碱的作用机理被认为是对碳阳离子的亲核稳定化:的亲核稳定化:10/29/2022(3)添加盐稳定阳碳离子)添加盐稳定阳碳离子 强强Lewis酸作活化剂时不能实现活性聚合,原因是在酸作活化剂时不能实现活性聚合,原因是在Lewis酸酸作用下碳阳离子与反离子解离而不稳定,易发生作用下碳阳离子与反离子解离而不稳定,易发生-质子链转移等副质子
19、链转移等副反应。但若向体系中加入一些季胺盐或季磷盐,如反应。但若向体系中加入一些季胺盐或季磷盐,如nBu4NCl、nBu4PCl等,由于阴离子浓度增大而产生同离子效应,抑制了增长等,由于阴离子浓度增大而产生同离子效应,抑制了增长链末端的离子解离,使碳阳离子稳定化而实现活性聚合:链末端的离子解离,使碳阳离子稳定化而实现活性聚合:10/29/20227.4 基团转移聚合基团转移聚合基团转移聚合特点基团转移聚合特点 基基团团转转移移聚聚合合(GTP)是是1983年年发发现现的的一一种种新新聚聚合合方方法法。其其中中以以(甲甲基基)丙丙烯烯酸酸酯酯类类单单体体的的基基团团转转移移聚聚合合最最为为重重要
20、要,这这是是因因为为它它们们的的聚聚合合速速率率适适中中,并并具具有有活活性性聚聚合合的的全全部部特特征征。与与阴阴离离子子活活性性聚聚合合相相比比,基基团团转转移移聚聚合合可可在在室室温温附附近近(20-70)进进行行,更更有有实实用用价值。价值。基团转移聚合所用引发剂为结构较特殊的烯酮硅缩醛及其衍生基团转移聚合所用引发剂为结构较特殊的烯酮硅缩醛及其衍生物,以二甲基乙烯酮甲基三甲基硅缩醛(物,以二甲基乙烯酮甲基三甲基硅缩醛(MTS)最为常用:)最为常用:10/29/2022基团转移聚合机理基团转移聚合机理 基团转移聚合属链式聚合。以烯酮硅缩醛基团转移聚合属链式聚合。以烯酮硅缩醛MTS引发引发
21、MMA为例,为例,链引发反应为链引发反应为:引发剂分子的引发剂分子的p-p-电子与单体的双键发生亲核加成,加成产物的电子与单体的双键发生亲核加成,加成产物的末端具有与引发剂末端具有与引发剂MTS类似的烯酮硅缩醛结构,可按上链引发反应类似的烯酮硅缩醛结构,可按上链引发反应的方式不断与单体加成进行链增长:的方式不断与单体加成进行链增长:10/29/2022 由由于于在在整整个个聚聚合合过过程程中中,都都伴伴随随着着从从引引发发剂剂或或增增长长链链末末端端向向单单体体转转移移一一个个特特定定基基团团(-SiMe3),形形成成新新的的活活性性末末端端烯烯酮酮硅硅缩缩醛,醛,“基团转移聚合基团转移聚合”
22、由此得名。由此得名。10/29/20227.5 活性活性/可控自由基聚合可控自由基聚合 与与离离子子聚聚合合相相比比,自自由由基基聚聚合合具具有有可可聚聚合合的的单单体体种种类类多多、反反应应条条件件温温和和、可可以以以以水水为为介介质质等等优优点点,容容易易实实现现工工业业化化生生产产。因因此此,活性活性/可控自由基聚合的开发研究更具有实际应用意义。可控自由基聚合的开发研究更具有实际应用意义。7.5.1 实现活性实现活性/可控自由基聚合的策略可控自由基聚合的策略 自自由由基基聚聚合合的的链链增增长长活活性性中中心心为为自自由由基基,具具有有强强烈烈的的双双基基终终止止即偶合或歧化终止倾向。因
23、此,传统的自由基聚合是不可控的。即偶合或歧化终止倾向。因此,传统的自由基聚合是不可控的。自由基聚合中,链增长反应和链终止反应对增长链自由基的浓自由基聚合中,链增长反应和链终止反应对增长链自由基的浓度而言分别是一级反应和二级反应:度而言分别是一级反应和二级反应:Rp=KpPMRt=ktP2 10/29/2022相对于链增长反应,链终止反应速率对链自由基浓度的依赖性相对于链增长反应,链终止反应速率对链自由基浓度的依赖性更大,降低链自由基浓度,链增长速率和链终止速率均都下降,但更大,降低链自由基浓度,链增长速率和链终止速率均都下降,但后者更为明显。假若能使链自由基浓度降低至某一程度,既可维持后者更为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高分子 化学 第七 活性 聚合
限制150内