高等热力学课件第1章流体pVT关系.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高等热力学课件第1章流体pVT关系.ppt》由会员分享,可在线阅读,更多相关《高等热力学课件第1章流体pVT关系.ppt(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 流体的流体的p V-T关系关系主要内容主要内容u 流体流体pVT关系发展概况关系发展概况u 维里方程维里方程u 立方型状态方程立方型状态方程u 流体的非理想性流体的非理想性u 混合物的混合物的pVT行为行为u 总结总结 流体的流体的p V T关系的发展概况关系的发展概况一、理想气体一、理想气体1662年年 Boyle定律定律1834年年 理想气体状态方程理想气体状态方程二、维里方程二、维里方程Onnes:1901年以一种经验的关系式开发出了维年以一种经验的关系式开发出了维里方程;里方程;Ursell:1927年年 维里方程的进一步理论发展;维里方程的进一步理论发展;Mayer:1937年年
2、维里方程的进一步理论发展维里方程的进一步理论发展三、立方型状态方程三、立方型状态方程1873年年van der Waals(范德华)(范德华)首次提出了能表达从气首次提出了能表达从气态到液态连续性的状态方程态到液态连续性的状态方程:对对van der Walls方程作了很多改进,其中比较成功地改进方程作了很多改进,其中比较成功地改进包括包括Redlich和和Kwong改进的改进的RK方程、方程、Soave的进一步改进的进一步改进(Soave方程,方程,1972年),年),Peng和和Robinson(1976年)年)这些立方型状态方程中的参数基本上可用临界性质表示,这些立方型状态方程中的参数基
3、本上可用临界性质表示,但也包括对温度和其他性质如压缩因子但也包括对温度和其他性质如压缩因子Z或偏心因子的修或偏心因子的修正,这些方程的改进大都是经验的或者任意的。正,这些方程的改进大都是经验的或者任意的。近来一些统计力学理论已用于改进立方型状态方程。近来一些统计力学理论已用于改进立方型状态方程。四、液体四、液体l对于液体,虽然在理论上和关联方面已做了很多工作,但对于液体,虽然在理论上和关联方面已做了很多工作,但了解仍然比气体少得多。了解仍然比气体少得多。l有一些经验关联式专门用于液体密度的计算,如有一些经验关联式专门用于液体密度的计算,如Hankinson 和和Thomson提出的饱和液体密度
4、计算关联式是提出的饱和液体密度计算关联式是典型代表;典型代表;l一些复杂的方程,如一些复杂的方程,如PR方程、方程、BWR方程、方程、HarmensKnapp方程,可作为较好的液体密度表达式。方程,可作为较好的液体密度表达式。l特别值得推荐的是特别值得推荐的是ASOG和和UNIFAC方法,通过流体的分方法,通过流体的分子结构去预测液体的混合物行为。子结构去预测液体的混合物行为。基团贡献法基团贡献法 维里方程维里方程u基本概念:基本概念:(1)“维里维里”(virial)这个词是从拉丁文演变而来的,它的原意是)这个词是从拉丁文演变而来的,它的原意是“力力”的意思。的意思。(2)方程利用)方程利用
5、统计力学统计力学分析分析分子间的作用力分子间的作用力,具有坚实的理论基础,具有坚实的理论基础。u方程形式:方程形式:压力形式:压力形式:体积形式:体积形式:密度形式密度形式:u维里系数维里系数:分别称为第二、第三、第四分别称为第二、第三、第四维维里(里(virial)系数。)系数。对于特定的物质,它们是温度的函数。对于特定的物质,它们是温度的函数。u维里方程最初用经验方式开发,后用统计力学分维里方程最初用经验方式开发,后用统计力学分析分子间力发展起来的。维里理论的应用大大超过析分子间力发展起来的。维里理论的应用大大超过pVT关系;同样的系数可包含在描述气体的其他性质关系;同样的系数可包含在描述
6、气体的其他性质之中,如黏度、热容中。之中,如黏度、热容中。u混合物的混合规则:混合物的混合规则:l注意几点注意几点(1)截尾形式:无穷级数对计算是不实用的,故在)截尾形式:无穷级数对计算是不实用的,故在B或者或者C截断的形式是常用的。截断的形式是常用的。(2)维里系数:从位能函数可以计算维里系数,特别是第)维里系数:从位能函数可以计算维里系数,特别是第二维里系数;二维里系数;(3)混合物:采用)混合物:采用Prausinitz提出的临界参数及提出的临界参数及B、C的混合的混合规则规则(4)二聚作用)二聚作用pVT行为与理想性的负偏差,有时是因为分子的缔合引起的,行为与理想性的负偏差,有时是因为
7、分子的缔合引起的,其中二聚作用是最为普遍的。其中二聚作用是最为普遍的。关于二聚等的非理想性见第二章关于二聚等的非理想性见第二章维里方程意义维里方程意义(1)(2)(3)(4)高阶维里系数的缺乏限制了维里方程的使用范围。高阶维里系数的缺乏限制了维里方程的使用范围。但绝不能忽略维里方程的理论价值。但绝不能忽略维里方程的理论价值。目前,维里方程不仅可以用于目前,维里方程不仅可以用于p V-T关系的计算,关系的计算,而且可以基于分子热力学利用维里系数联系气体的而且可以基于分子热力学利用维里系数联系气体的粘度、声速、热容等性质。粘度、声速、热容等性质。常用物质的维里系数可以从文献或数据手册中查到,常用物
8、质的维里系数可以从文献或数据手册中查到,并且可以用普遍化的方法估算。并且可以用普遍化的方法估算。立方型状态方程立方型状态方程u立方型状态方程是指方程可展开为立方型状态方程是指方程可展开为体积(或密度)的三次体积(或密度)的三次方形方形式。式。u特点:这类方程能够解析求根,有较高精度,又不太复杂,特点:这类方程能够解析求根,有较高精度,又不太复杂,很受工程界欢迎。很受工程界欢迎。u常用方程:常用方程:van der WaalsRK方程方程RKS方程方程PR方程方程一、参数一、参数a和和b的估算:的估算:(1)从流体的)从流体的p-V-T实验数据拟合得到实验数据拟合得到(2)利用)利用这些参数还用
9、于许多性质计算,这些参数还用于许多性质计算,如密度、蒸气压、逸度等。如密度、蒸气压、逸度等。因此,用这些数据拟合参数,因此,用这些数据拟合参数,以适用于某些性质。以适用于某些性质。纯物质的纯物质的p V图图 u方程形式方程形式归纳立方型状态方程,可以将其表示为如下的形式:归纳立方型状态方程,可以将其表示为如下的形式:u方程参数:方程参数:l参参数数和和为为纯纯数数据据,对对所所有有的的物物质质均均相相同同;对对于于不不同同的的方方程数据不同;程数据不同;l参参数数b是是物物质质的的参参数数,对对于于不不同同的的状状态态方方程程会会有有不不同同的的温温度度函数。函数。l立立方方型型方方程程形形式
10、式简简单单,方方程程中中一一般般只只有有两两个个参参数数,参参数数可可用纯物质临界性质和偏心因子计算,有时也与温度有关。用纯物质临界性质和偏心因子计算,有时也与温度有关。,二、立方型状态方程的通用形式二、立方型状态方程的通用形式方程求解方程求解TTcT=Tc立方型状态方程是一个关于立方型状态方程是一个关于V的三次方程,其等温线如下图,根据不同的三次方程,其等温线如下图,根据不同的情况,其解有三种情况的情况,其解有三种情况:T T Tc c时,时,一个实根,两个虚根一个实根,两个虚根T=Tc时有时有三个相等的实根三个相等的实根TTc时,有时,有三个不等的实根。三个不等的实根。当当p=ps时,最大
11、的根为饱和气体时,最大的根为饱和气体体积,最小的根为饱和液体体积。体积,最小的根为饱和液体体积。中间根无意义。中间根无意义。当当pps时,只有一个根有意义,时,只有一个根有意义,其他两个实根无意义。其他两个实根无意义。三、三、Redlich-Kwong方程方程u 方程形式方程形式:vDW方程的引力项没有考虑温度的影响,而方程的引力项没有考虑温度的影响,而RK方程的引力项加入了温度方程的引力项加入了温度项。项。混合规则混合规则u使用情况和意义使用情况和意义(1)RK方程的计算准确度比方程的计算准确度比van der Waals方程有较大的提方程有较大的提高;高;(2)一般)一般适用于气体适用于气
12、体p V T 性质性质计算计算;(3)可以较准确地用于非极性和弱极性化合物,可以较准确地用于非极性和弱极性化合物,误差在误差在2 2 左右左右(4)但对于强极性及含有氢键的化合物仍会产生较大的偏)但对于强极性及含有氢键的化合物仍会产生较大的偏差。误差达差。误差达1020。(5)很少用于液体很少用于液体p V T 性质计算性质计算;(6)为了进一步提高)为了进一步提高RK方程的精度,扩大其使用范围,便方程的精度,扩大其使用范围,便提出了更多的立方型状态方程。提出了更多的立方型状态方程。三、三、Redlich-Kwong方程方程四、四、Soave-Redlish-Kwang 方程(简称方程(简称R
13、KS方程方程)u方程形式方程形式:u方程参数方程参数:式中,式中,为偏心因子为偏心因子R-K Eq中中 af(Tc,pc)SRK Eq中中 a(T)f(Tc,pc,T,)-1-2-312Ar,Kr,XeAr,Kr,Xe非球形分子非球形分子1 1非球形分子非球形分子2 2四、四、RKS方程(混合规则)方程(混合规则)一般:一般:也可以:也可以:u使用情况和意义使用情况和意义(1)RKS方程提高了对极性物质及含有氢键物质的方程提高了对极性物质及含有氢键物质的p V T计算精度。计算精度。(2)可以用于液体可以用于液体p V T 性质计算。如在饱和液体密度的计性质计算。如在饱和液体密度的计算中更准确
14、。算中更准确。Soave-Redlish-Kwang 方程(简称方程(简称RKS方程方程)PengRobinson方程(简称方程(简称PR方程)方程)u方程形式方程形式:u方程参数:方程参数:a(T)f(Tc,pc,T,)u方程使用情况方程使用情况:(1)RK方方程程和和RKS方方程程在在计计算算临临界界压压缩缩因因子子Zc和和液液体体密密度度时时都都会会出出现现较较大大的的偏偏差差,PR方方程程弥弥补补这这一一明显的不足;明显的不足;(2)它它在在计计算算饱饱和和蒸蒸气气压压、饱饱和和液液体体密密度度等等方方面面有有更好的准确度;更好的准确度;(3)是工程相平衡计算中最常用的方程之一。)是工
15、程相平衡计算中最常用的方程之一。u方程提出方程提出 若已知体系的温度若已知体系的温度T和压力和压力p,要计算体积,要计算体积V,提出了便于,提出了便于计算机迭代计算的方程形式计算机迭代计算的方程形式。u方程形式方程形式:u方程参数方程参数:RK方程和方程和RKS方程方程 的迭代形式的迭代形式 u方程的计算过程方程的计算过程 设初值设初值Z(一般取(一般取Z1);将将Z值代入式(值代入式(2),计算),计算h;将将h值代入式(值代入式(1)计算)计算Z值;值;比比较较前前后后两两次次计计算算的的Z值值,若若误误差差已已达达到到允允许许范范围围,迭迭代代结结束束;否否则则返返回步骤回步骤再进行运算
16、。再进行运算。用图表示为用图表示为:u意意义义:引引入入h后后,使使迭迭代代过过程程简简单单,便便于于直直接接三三次次方方程程求求解解。但但需需要要注注意意的的是是该迭代方法不能用于饱和液相摩尔体积根的计算。该迭代方法不能用于饱和液相摩尔体积根的计算。NoYeshZZ(0)h(0)(1)(2)液体或者气体体积求解液体或者气体体积求解针对液体或者气体体积可以写出了不同的迭代形式,分别针对液体或者气体体积可以写出了不同的迭代形式,分别求出液体或者气体的体积。求出液体或者气体的体积。汽相汽相:或者或者或者或者液相液相多参数状态方程多参数状态方程多参数状态方程特点:多参数状态方程特点:(1)与与简简单
17、单的的状状态态方方程程相相比比,多多参参数数状状态态方方程程可可以以在在更更宽宽的的T、p范范围围内内准准确确地地描描述述不不同同物物系系的的p-V-T关系关系(2)但但方方程程形形式式复复杂杂,计计算算难难度度和和工工作作量量都都较较大大。如如BWR、BWRS、MH方程方程其他状态方程其他状态方程u还有一些对应状态原理的方法,如还有一些对应状态原理的方法,如Pitzer压缩因子图、各压缩因子图、各种普遍化状态方程、种普遍化状态方程、Lee-Kesler方程。及一些给予统计力方程。及一些给予统计力学的方程如微扰硬球方程。学的方程如微扰硬球方程。Lee-Kesler方程方程b1等均为常数,对于简
18、单流体和参考流体不同。等均为常数,对于简单流体和参考流体不同。用试差法计算用试差法计算Vr,进一步计算,进一步计算Z流体的非理想性流体的非理想性一、与理想性的偏差一、与理想性的偏差l理想气体理想气体分子的大小如同几何点分子的大小如同几何点分子间不存在相互作用力分子间不存在相互作用力极低的压力下真实气体非常接近理想气体极低的压力下真实气体非常接近理想气体许多实际物质的性质可以通过与理想气体的偏差,这许多实际物质的性质可以通过与理想气体的偏差,这也是热力学研究的一个重要方法。如压缩因子也是热力学研究的一个重要方法。如压缩因子Z,剩余,剩余性质性质MR此外,实际气体与理想气体之间的另一个重要差别是此
19、外,实际气体与理想气体之间的另一个重要差别是它们的热行为。如它们的热行为。如二、分子间作用力二、分子间作用力l分子的大小、形状和结构确定了它们之间的力和最终的分子的大小、形状和结构确定了它们之间的力和最终的pVT行为。引力使分子结合在一起,斥力使分子分开。前者行为。引力使分子结合在一起,斥力使分子分开。前者在分子距离大时起作用,后者在近距离范围内有影响。在分子距离大时起作用,后者在近距离范围内有影响。l根据分子的根据分子的电性质电性质,分子可以分为三种:,分子可以分为三种:(1)电中性和对称性,通常为)电中性和对称性,通常为非极性非极性分子分子(2)电中性而非对称性,即具有偶极距,称为)电中性
20、而非对称性,即具有偶极距,称为极性极性分子;分子;(3)有剩余价有剩余价,可产生缔合和氢键。,可产生缔合和氢键。在所有分子中都存在斥力和引力,但在缔合和极性分子中,在所有分子中都存在斥力和引力,但在缔合和极性分子中,它们以不寻常的形式出现。它们以不寻常的形式出现。目前目前pVT关系和方程最成功地描述非极性物质的行为,包括关系和方程最成功地描述非极性物质的行为,包括重要的烃类。重要的烃类。分子极性分子极性u极性:当一个键的极性:当一个键的电中心电中心与其与其质量中心质量中心不重合时,就产生偶不重合时,就产生偶极距。极性是以偶极距的大小来定义的。偶极距的单位为极距。极性是以偶极距的大小来定义的。偶
21、极距的单位为Debye。u极性分子特点:极性分子与非极性分子相比,具有较大的黏极性分子特点:极性分子与非极性分子相比,具有较大的黏度和较高的沸点、熔点;极性分子还更能溶解于水。特别度和较高的沸点、熔点;极性分子还更能溶解于水。特别重要的是极性分子表现出更大的超额热力学性质。重要的是极性分子表现出更大的超额热力学性质。u分子之间的作用力可以使用位能函数来描述。例如分子之间的作用力可以使用位能函数来描述。例如Lennard-Jones 12-6位能函数位能函数。分子的缔合和氢键分子的缔合和氢键l极性物质的分子趋向于形成基团,因为它们的氢原子极性物质的分子趋向于形成基团,因为它们的氢原子表现出好像有
22、剩余价,这种作用称为氢键。其趋势是表现出好像有剩余价,这种作用称为氢键。其趋势是随着组成原子的电负性减小而减小。随着组成原子的电负性减小而减小。l例如例如(HF)6;而乙酸、甲酸的气体在略高于沸点时是;而乙酸、甲酸的气体在略高于沸点时是双分子;醇类、酯类、醛类和其他物质,在正常压力双分子;醇类、酯类、醛类和其他物质,在正常压力和温度下,也表现出明显的缔合。这种缔合的程度随和温度下,也表现出明显的缔合。这种缔合的程度随压力和浓度减小而降低,却随着温度的升高而降低。压力和浓度减小而降低,却随着温度的升高而降低。氢键氢键例如氟化氢例如氟化氢 两个电负性足够大的原两个电负性足够大的原X和和Y,在适当的
23、条件下可以,在适当的条件下可以按按 的形式和氢连接。因而,分子如果含有和电的形式和氢连接。因而,分子如果含有和电负性原子连接的氢(如在醇、酸、胺中),它就显示出互负性原子连接的氢(如在醇、酸、胺中),它就显示出互相缔合以及和其他具有可接近的电负性原子的分子生成溶相缔合以及和其他具有可接近的电负性原子的分子生成溶剂化物的强烈趋势。剂化物的强烈趋势。再如:醋酸主要以二聚体组成,这是存在氢键的作用。再如:醋酸主要以二聚体组成,这是存在氢键的作用。氯仿氯仿CHCl3和丙酮和丙酮CH3COCH3有溶剂化的趋势,这是因有溶剂化的趋势,这是因为氯仿中的伯氢原子和丙酮中的羰基氧之间形成氢键,这为氯仿中的伯氢原
24、子和丙酮中的羰基氧之间形成氢键,这种溶剂化作用对于氯仿丙酮溶液的性质有显著影响。种溶剂化作用对于氯仿丙酮溶液的性质有显著影响。氯仿和二异丁基甲酮也形成氢键,但由于存在空间障碍,氯仿和二异丁基甲酮也形成氢键,但由于存在空间障碍,络合的趋势小得多。络合的趋势小得多。CClClClHCH3COCH3CCCCCCCCCO氢键存在对于纯物质性质的影响氢键存在对于纯物质性质的影响l比较同分异构体比较同分异构体C2H6O的某些热力学性质,便可的某些热力学性质,便可以很好地说明氢键对于物化性质的强烈影响。以很好地说明氢键对于物化性质的强烈影响。乙醇乙醇 CH3CH2OH;二甲醚二甲醚 CH3OCH3乙醇乙醇二
25、甲醚二甲醚正常沸点,正常沸点,78-25沸点下蒸发焓沸点下蒸发焓42.618.68、1bar下在水中下在水中的溶解度的溶解度g/100g无穷无穷7.12氢键存在对于混合性质的影响氢键存在对于混合性质的影响1.1.当形成氢键的物质溶于相对惰性的非极性溶剂中,然后研当形成氢键的物质溶于相对惰性的非极性溶剂中,然后研究溶液的热力学性质,往往可以发现同种分子的氢键。究溶液的热力学性质,往往可以发现同种分子的氢键。如:乙醇溶于过量的非极性溶剂(如己烷或环己烷)时,其如:乙醇溶于过量的非极性溶剂(如己烷或环己烷)时,其混合体积有明显膨胀(超额体积大于混合体积有明显膨胀(超额体积大于0 0)。这是由于氢键不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 热力学 课件 流体 pVT 关系
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内