圆锥曲线大题20道(共14页).doc
《圆锥曲线大题20道(共14页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线大题20道(共14页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.解:()设双曲线方程为 由已知得故双曲线C的方程为()将 由直线l与双曲线交于不同的两点得即 设,则而于是 由、得 故k的取值范围为2.已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设. ()证明:1e2; ()确定的值,使得PF1F2是等腰三角形.来源:Zxxk.Com()证法
2、一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是. 所以点M的坐标是(). 由即 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是所以 因为点M在椭圆上,所以 即来源:学科网ZXXK 解得 ()解法一:因为PF1l,所以PF1F2=90+BAF1为钝角,要使PF1F2为等腰三角形,必有|PF1|=|F1F2|,即 设点F1到l的距离为d,由 得 所以 即当PF1F2为等腰三角形.解法二:因为PF1l,所以PF1F2=90+BAF1为钝角,要使PF1F2为等腰三角形,必有|PF1|=|F1F2|,设点P的坐标是,则,由|PF1|=|F1
3、F2|得两边同时除以4a2,化简得 从而于是 即当时,PF1F2为等腰三角形.来源:Z,xx,k.Com3.设,为直角坐标平面内轴、轴正方向上的单位向量,若,且.()求点的轨迹C的方程;来源:学#科#网()若A、B为轨迹C上的两点,满足,其中M(0,),求线段AB的长.来源:学+科+网启思4.已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.()求椭圆的离心率;()设M为椭圆上任意一点,且,证明为定值.解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为则直
4、线AB的方程为,代入,化简得.令A(),B),则由与共线,得又,即,所以,故离心率(II)证明:(1)知,所以椭圆可化为设,由已知得 在椭圆上,即由(1)知变式新题型3 抛物线的顶点在原点,焦点在x轴上,准线l与x轴相交于点A(1,0),过点A的直线与抛物线相交于P、Q两点.来源:学科网(1)求抛物线的方程;(2)若=0,求直线PQ的方程;来源:学科网(3)设=(1),点P关于x轴的对称点为M,证明:=-.来源:Zxxk.Com.6.已知在平面直角坐标系中,向量,且 .(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.7.已
5、知,点在轴上,点在轴的正半轴,点在直线上,且满足,.()当点在轴上移动时,求动点的轨迹方程;()过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.8. 已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且 ()当点P在圆上运动时,求点Q的轨迹方程; ()若直线与()中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求FOH的面积 已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、三点()求椭圆的方程;()若直线:()与椭圆交于、两点,证明直线与直线的交点在直线上10如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A、B两
6、点,点Q是点P关于原点的对称点。 ()设点P分有向线段所成的比为,证明()设直线AB的方程是x2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。10. 已知平面上一定点和一定直线为该平面上一动点,作垂足为,.(1) 问点在什么曲线上?并求出该曲线方程;(2) 点是坐标原点,两点在点的轨迹上,若求的取值范围11. 如图,已知E、F为平面上的两个定点 ,且,(G为动点,P是HP和GF的交点)(1)建立适当的平面直角坐标系求出点的轨迹方程;(2)若点的轨迹上存在两个不同的点、,且线段的中垂线与GFPHE(或的延长线)相交于一点,则(为的中点)12已知动圆过定点,且与直线相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 20 14
限制150内