(完整word版)大学概率论与数理统计复习资料.pdf
《(完整word版)大学概率论与数理统计复习资料.pdf》由会员分享,可在线阅读,更多相关《(完整word版)大学概率论与数理统计复习资料.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章随机事件及其概率知识点:概率的性质事件运算古典概率事件的独立性条件概率全概率与贝叶斯公式常用公式)()()()()()2(加法定理ABPBPAPBAP),()()(2111有限可加性两两互斥设nniiniiAAAAPAP),(0)()()()()(互不相容时独立时与BAABPBABPAPABP)()()()()5(ABPAPBAPBAP)()()()()(时当ABBPAPBAPBAP)0(,()()/()()()6(211inniiiAPAAAABPAPBP且的一个划分为其中全概率公式),()(11)(2111相互独立时nniiniiAAAAPAP)/()()/()()()4(BAPBP
2、ABPAPABP)(/)()/()3(APABPABP)()/()()/()()/()7(1逆概率公式niiiiiiABPAPABPAPBAP)(/)()(/)()1(SLALAPnrAP应用举例1、已知事件,A B满足)()(BAPABP,且6.0)(AP,则)(BP()。2、已知事件,A B相互独立,,)(kAP6.0)(,2.0)(BAPBP,则k()。3、已知事件,A B互不相容,,3.0)(AP)(,5.0)(BAPBP则()。4、若,3.0)(AP)(,5.0)(,4.0)(BABPBAPBP()。5、,A B C是三个随机事件,CB,事件ACB与A的关系是()。6、5 张数字卡片
3、上分别写着1,2,3,4,5,从中任取 3 张,排成 3 位数,则排成3 位奇数的概率是()。7、某人下午5:00 下班。他所积累的资料表明:到家时间5:305:40 5:405:50 5:506:00 6:00以后乘地铁0.3 0.4 0.2 0.1 乘汽车0.2 0.3 0.4 0.1 某日他抛一枚硬币决定乘地铁还是乘汽车。(1)试求他在5:405:50 到家的概率;(2)结果他是5:47 到家的。试求他是乘地铁回家的概率。解(1)设1A=他是乘地铁回家的,2A=他是乘汽车回家的,iB=第i段 时 间 到 家 的 ,4,3,2,1i分 别 对 应 时 间 段5:305:40,5:405:5
4、0,5:506:00,6:00 以后则由全概率公式有)|()()|()()(2221212ABPAPABPAPBP由上表可知4.0)|(12ABP,3.0)|(22ABP,5.0)()(21APAP35.05.03.04.05.0)(2BP(2)由贝叶斯公式7435.04.05.0)()()|(22121BPBAPBAP8、盒中 12 个新乒乓球,每次比赛从中任取3 个来用,比赛后仍放回盒中,求:第三次比赛时取到3 个新球的概率。看作业习题1:4,9,11,15,16 文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6
5、Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A
6、8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC
7、5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4
8、B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O
9、1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:
10、CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 H
11、M4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8第二章随机变量及其分布知识点:连续型(离散型)随机变量分布的性质连续型(离散型)随机变量分布(包括随机变量函数的分布)常用分布重要内容)(Rxxf0)()()()(12121xFxFxxxF单调递增,即)(1)(lim)(0)(lim)(2xFFxFFxx)()()0()(3xFxFxF右连续,即)(RxxF10)4()(1iip2分布律的性质.)2,1(,10ipi1.分布函数的性质(
12、1)非负性(2)规范性3.分布密度函数的性质1)(dxxf(1)非负性(2)规范性文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N
13、7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8
14、Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10
15、I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L
16、4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5
17、U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F
18、10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I84.概率计算5.常用分布)(或泊松分布PXX)()0,.;1,0(,!)(kekkXPk1221()()()P xXxP XxP Xx)()(aFaXP)0()()(aFaFaXP2
19、1)()(21xxdxxfxXxP0)0()()(aFaFaXPadxxfXaP)()(adxxfaXP)()(为连续型随机变量:X),(,pnbXpnBX)或(记为二项分布:),.1,0(,)(nkqpCkXPknkkn条件:较大且很小泊松定理)(,!)1(npekppCkknkkn文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1
20、A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:C
21、C5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM
22、4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1
23、O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码
24、:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5
25、HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 ZH1O1A8F10I8文档编码:CC5G8L4N7Y5 HM4B6Z5U8Q1 Z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 大学 概率论 数理统计 复习资料
限制150内