(完整word版)三角函数常用公式表.pdf
《(完整word版)三角函数常用公式表.pdf》由会员分享,可在线阅读,更多相关《(完整word版)三角函数常用公式表.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、07 高中数学会考复习提纲(2)(三角函数)第四章 三角函数1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角;(2)、与终边相同的角,连同角在内,都可以表示为集合Zkk,360|(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1 弧度的角,用弧度做单位叫弧度制。(2)、度数与弧度数的换算:180弧度,1 弧度1857)180((3)、弧长公式:rl|(是角的弧度数)扇形面积:2|2121
2、rlrS3、三角函数(1)、定义:(如图)(2)、各象限的符号:yryxrxxrxyrycsccotcossectansin(3)、特殊角的三角函数值的角度030456090120135150180270360的弧度06432324365232sin02122231232221010cos12322210212223101tan033133133004、同角三角函数基本关系式()平方关系:()商数关系:()倒数关系:1cossin22c o ss i nt a n1c o tt a n22sectan1s i nc o sc o t1c s cs i n22csccot11seccos(4)同
3、角三角函数的常见变形:(活用“1”)sinx y+_ _ O x y+_ _ cosO tanx y+_ _ O P(x,y)r x 0 022yxry secsincostancotcsc1 精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 7 页 -、22cos1sin,2cos1sin;22sin1cos,2sin1cos;2sin2cossinsincoscottan22,2cot22sin2cos2cossinsincostancot222sin1cossin21)cos(sin2,|cossin|2sin15、诱导公式:(奇变偶不变,符号看象限)公式一:tan)360tan(
4、cos)360cos(sin)360sin(kkk公式二:公式三:公式四:公式五:tan)180tan(cos)180cos(sin)180sin(tan)180tan(cos)180cos(sin)180sin(tan)tan(cos)cos(sin)sin(tan)360tan(cos)360cos(sin)360sin(补充:cot)2tan(sin)2cos(cos)2sin(cot)2tan(sin)2cos(cos)2sin(cot)23tan(sin)23cos(cos)23sin(cot)23tan(sin)23cos(cos)23sin(6、两角和与差的正弦、余弦、正切)(S
5、:sincoscossin)sin()(S:sincoscossin)sin()(C:sinsincoscos)cos(a)(C:sinsincoscos)cos(a)(T:tantan1tantan)tan()(T:tantan1tantan)tan()(T的整式形式为:)tantan1()tan(tantan例:若45BA,则2)tan1)(tan1(BA(反之不一定成立)7、辅助角公式:xbabxbaabaxbxacossincossin222222)sin()sincoscos(sin2222xbaxxba(其中称为辅助角,的终边过点),(ba,abtan)(多用于研究性质)8、二倍角
6、公式:(1)、2S:cossin22sin(2)、降次公式:(多用于研究性质)2C:22sincos2cos2sin21cossin精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 7 页 -文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH
7、2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A
8、8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编
9、码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U
10、9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3
11、O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG1
12、0Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U
13、4T5 ZH2L3X5A8Q31cos2sin2122212cos2122cos1sin22T:2t a n1t a n22t a n212cos2122cos1cos2(3)、二倍角公式的常用变形:、|sin|22cos1,|cos|22cos1;、|sin|2cos2121,|cos|2cos2121、22sin1cossin21cossin22244;2cossincos44;半角:2cos12sin,2cos12cos,cos1cos12tancos1sinsincos19、三角函数的图象性质(1)、函数的周期性:、定义:对于函数f(x),若存在一个非零常数T,当 x 取定义域内的每一
14、个值时,都有:f(x+T)=f(x),那么函数f(x)叫周期函数,非零常数T 叫这个函数的周期;、如果函数f(x)的所有周期中存在一个最小的正数,这个最小的正数叫f(x)的最小正周期。(2)、函数的奇偶性:、定义:对于函数f(x)的定义域内的任意一个x,都有:f(-x)=-f(x),则称 f(x)是奇函数,f(-x)=f(x),则称 f(x)是偶函数、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;、奇函数,偶函数的定义域关于原点对称;(3)、正弦、余弦、正切函数的性质(Zk)函数定义域值域周期性奇偶性递增区间递减区间xysinRx-1,1 2T奇函数kk22,22kk223,22xyc
15、osRx-1,1 2T偶函数kk2,)12()12(,2kkxytan2|kxx(-,+)T奇函数kk2,2xysin图象的五个关键点:(0,0),(2,1),(,0),(23,-1),(2,0);xycos图象的五个关键点:(0,1),(2,0),(,-1),(23,0),(2,1);0 1-1 x y 22232xysin0 1 x y 22232xycoso 222323x y xytan精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 7 页 -文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4
16、U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 Z
17、H2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5
18、A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档
19、编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8
20、U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G
21、3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG
22、10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3xysin的对称中心为(0,k);对称轴是直线2kx;)sin(xAy的周期2T;xycos的对称中心为(0,2k);对称轴是直线kx;)c o s(xAy的周期2T;xytan的对称中心为点(0,k)和点(0,2k);)tan(xAy的周期T;(4)、函数)0,0)(sin(AxAy的相关概念:函数定
23、义域值域振幅周期频率相位初相图象)sin(xAyRx-A,A A 2T21Tfx五点法)sin(xAy的图象与xysin的关系:、振幅变换:xysinxAysin、周期变换:xysinxysin、相位变换:xysin)sin(xy、平移变换:xAysin)sin(xAy常叙述成:、把xys i n上的所有点向左(0时)或向右(0时)平移|个单位得到)sin(xy;、再把)sin(xy的所有点的横坐标缩短(1)或伸长(01)到原来的1倍(纵坐标不变)得到)sin(xy;、再把)sin(xy的所有点的纵坐标伸长(1A)或缩短(01A)到原来的A倍(横坐标不变)得到)sin(xAy的图象。先平移后伸
24、缩的叙述方向:)sin(xAy先平移后伸缩的叙述方向:)(sin)sin(xAxAy10、反三角:求角条件x 的值x 的范围当 x 为钝角时axsin(11a)axarcsin(反正弦)2,2xaxarcsin(10a)当 A1时,图象上各点的纵坐标伸长到原来的A 倍当0A1时,图象上各点的纵坐标缩短到原来的A 倍当1时,图象上各点的纵坐标缩短到原来的1倍当01时,图象上各点的纵坐标伸长到原来的1倍当0时,图象上的各点向左平移个单位倍当0时,图象上的各点向右平移|个单位倍当0时,图象上的各点向左平移个单位倍当0时,图象上的各点向右平移|个单位倍精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页
25、,共 7 页 -文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8Q3文档编码:CG8U9A10G3O5 HG10Q2H4U4T5 ZH2L3X5A8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 三角函数 常用 公式
限制150内