(完整word版)初中数学圆的辅助线八种作法.pdf
《(完整word版)初中数学圆的辅助线八种作法.pdf》由会员分享,可在线阅读,更多相关《(完整word版)初中数学圆的辅助线八种作法.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.中 考 数 学 圆 的 辅 助 线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。例1如图 1,O 的弦 AB、CD 相交于点 P,且 AC=BD。求证:PO 平分 APD。分析 1:由等弦 AC=BD 可得出等弧=进一步得出=,从而可证等弦AB=CD,由同圆中等弦上的弦
2、心距相等且分别垂直于它们所对应的弦,因此可作辅助线OEAB,OFCD,易证 OPE OPF,得出 PO 平分 APD。证法 1:作 OEAB 于 E,OFCD 于 F AC=BD=AB=CD=OE=OF OEP=OFP=90=OPE OPF 0OP=OP=OPE=OPF=PO 平分 APD 分析 2:如图 1-1,欲证 PO 平分 APD,即证AB(BD,(CD(D C B P OA E F P B 图 1 AC(AC(BD(AB(CD(.OPA=OPD,可把 OPA 与 OPD 构造在两个三角形中,证三角形全等,于是不妨作辅助线即半径 OA,OD,因此易证 ACP DBP,得 AP=DP,从
3、而易证 OPA OPD。证法 2:连结 OA,OD。CAP=BDP APC=DPB=ACP DBP AC=BD=AP=DP OA=OD=OPA OPD=OPA=OPD=PO 平分 APD OP=OP 2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。例 2 如图 2,在 ABC 中,AB=AC,以 AB 为直径作 O 交 BC 于点 D,过 D 作 O 的切线 DM 交 AC 于 M。求证DMAC。分析:由 AB 是直径,很自然想到其所B D C M A O.A 2 1 图 2 D C B P OA P B 图 1-1 文档编
4、码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I1
5、0 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3
6、 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文
7、档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9
8、I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4
9、Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F
10、9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9.对的圆周角是直角。于是可连结AD,得 ADB=Rt,又由等腰三角形性质可得1=2,再由弦切角的性质可得ADM=B,故易证 AMD=ADB=90 ,从而 DMAC。证明连结 AD。AB 为 O 的直径=ADB=Rt AB=AC DM 切 O 于 D=ADM=B=1+B=
11、2+ADM=AMD=ADB=Rt =DM AC 说明,由直径及等腰三角形想到作直径上的圆周角。3.当圆中有切线常连结过切点的半径或过切点的弦例 3 如图 3,AB 是 O 的直径,点 D 在 AB 的延长线上,BD=OB,DC 切 O 于C 点。求 A 的度数。分析:由过切点的半径垂直于切线,于是可作辅助线即半径OC,得 Rt,再由解直角三角形可得COB 的度数,从而可求 A 的度数。解:连结 OC。DC 切 O 于 C=OCD=90 OC=OB=BD=A=1/2 COB=30 说明,由过切点的半径垂直于切线想到连结半径。例 4 如图 4,已知 ABC 中,1=2,=1=2=COS COD=O
12、C/OD=1/2=COB=60 D A O B C.图 3 文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O
13、5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8
14、M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T
15、1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H
16、9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4
17、K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ
18、4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9.圆 O 过 A、D 两点,且与BC切于 D 点。求证EF/BC。分析:欲证EF/BC,可找同位角或内错角是否相等,显然同位角相等不易证,于是可连结DE,得一对内错角BDE 与 DEF,由圆的性质可知这两
19、个角分别等于1 和 2,故易证 EF/BC。证明连结 DE。BC切 O 于 D=BDE=1 2=DEF=BDE=DEF=EF/BC 1=2 说明,由有切线且在同圆中等弧所对的圆周角相等想到连结弦。4.当两圆相切,可作公切线或连心线例 5 已知:如图5,O1与 O2外切于点 P,过 P 点作两条直线分别交O1与O2于点 A、B、C、D。求证PB?PC=PA?PD。分析:欲证PB?PC=PA?PD,即证 PAPB=PCPD,由此可作辅助线AC、BD,并证 AC/DB,要证平行,需证一对内错角相等,如C=D,然后考虑到这两个角分别与弦切角有关,进而再作辅助线即两圆公切线MN,从而问题迎刃而解。A C
20、 N B D M P O1O2.E D C F O 1 2 A B 图 4 文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I1
21、0 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3
22、 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文
23、档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9
24、I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4
25、Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F9文档编码:CJ4T1Z7A9I10 HX8H9O5P4Y3 ZB5K4K8M9F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 初中 数学 辅助线 作法
限制150内