(完整word版)函数奇偶性练习题(内含答案),推荐文档.pdf
《(完整word版)函数奇偶性练习题(内含答案),推荐文档.pdf》由会员分享,可在线阅读,更多相关《(完整word版)函数奇偶性练习题(内含答案),推荐文档.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新希望培训学校资料MATHEMATICS 心在哪里,新的希望就在哪里函数奇偶性练习(内含答案)一、选择题1已知函数f(x)ax2bxc(a0)是偶函数,那么g(x)ax3bx2cx()A奇函数B偶函数C既奇又偶函数D非奇非偶函数2已知函数f(x)ax2bx3ab是偶函数,且其定义域为a1,2a,则()A31a,b0 Ba 1,b0 Ca1,b0 Da 3,b03已知f(x)是定义在 R上的奇函数,当x0 时,f(x)x22x,则f(x)在 R上的表达式是()Ay x(x2)By x(x1)C y x(x 2)Dyx(x 2)4已知f(x)x5ax3bx8,且f(2)10,那么f(2)等于()A
2、 26 B 18 C 10 D 105函数1111)(22xxxxxf是()A偶函数B奇函数C非奇非偶函数D既是奇函数又是偶函数6若)(x,g(x)都是奇函数,2)()(xbgaxf在(0,)上有最大值5,则f(x)在(,0)上有()A最小值 5 B最大值 5 C最小值 1 D最大值 3二、填空题7函数2122)(xxxf的奇偶性为 _(填奇函数或偶函数)8若y(m1)x22mx3 是偶函数,则m_9已知f(x)是偶函数,g(x)是奇函数,若11)()(xxgxf,则f(x)的解析式为_10已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)0 的所有实根之和为_三、解答题11设
3、定义在2,2上的偶函数f(x)在区间 0,2上单调递减,若f(1m)f(m),求实数m的取值范围精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 4 页 -新希望培训学校资料MATHEMATICS 心在哪里,新的希望就在哪里12已知函数f(x)满足f(xy)f(xy)2f(x)f(y)(xR,yR),且f(0)0,试证f(x)是偶函数13.已知函数f(x)是奇函数,且当x0 时,f(x)x32x21,求f(x)在 R上的表达式14.f(x)是定义在(,55,)上的奇函数,且f(x)在 5,)上单调递减,试判断f(x)在(,5上的单调性,并用定义给予证明15.设函数yf(x)(xR且x0)
4、对任意非零实数x1、x2满足f(x1x2)f(x1)f(x2),求证f(x)是偶函数精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 4 页 -文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP
5、7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9
6、T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:
7、CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9
8、HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 Z
9、L9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编
10、码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8新希望培训学校资料MATHEMATICS 心在哪里,新的希望就在哪里函数的奇偶性练习参考答案1解析:f(x)ax2
11、bxc为偶函数,xx)(为奇函数,g(x)ax3bx2cxf(x))(x满足奇函数的条件答案:A 2解析:由f(x)ax2bx3ab为偶函数,得b0又定义域为a1,2a,a12a,31a故选 A3解析:由x0 时,f(x)x22x,f(x)为奇函数,当x0 时,f(x)f(x)(x22x)x22xx(x2),)0()0()2()2()(xxxxxxxf即f(x)x(|x|2)答案:D 4解析:f(x)8x5ax3bx为奇函数,f(2)818,f(2)8 18,f(2)26答案:A 5解析:此题直接证明较烦,可用等价形式f(x)f(x)0答案:B 6解析:)(x、g(x)为奇函数,)()(2)(
12、xbgxaxf为奇函数又f(x)在(0,)上有最大值5,f(x)2 有最大值3f(x)2 在(,0)上有最小值3,f(x)在(,0)上有最小值1答案:C 7答案:奇函数8答案:0 解析:因为函数y(m1)x22mx3 为偶函数,f(x)f(x),即(m1)(x)22m(x)3(m1)x22mx3,整理,得m09解析:由f(x)是偶函数,g(x)是奇函数,可得11)()(xxgxf,联立11)()(xxgxf,11)1111(21)(2xxxxf答案:11)(2xxf10答案:0 11答案:21m12证明:令xy0,有f(0)f(0)2f(0)f(0),又f(0)0,可证f(0)1令x0,f(y
13、)f(y)2f(0)f(y)f(y)f(y),故f(x)为偶函数13解析:本题主要是培养学生理解概念的能力f(x)x32x21因f(x)为奇函数,f(0)0当x0 时,x0,f(x)(x)32(x)21x32x2 1,精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 4 页 -文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2I1O6I8文档编码:CN4O2H3T10C9 HP7C2Q8W6W9 ZL9T2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 函数 奇偶性 练习题 内含 答案 推荐 文档
限制150内