(完整版)高中数学平面向量知识点总结.pdf
《(完整版)高中数学平面向量知识点总结.pdf》由会员分享,可在线阅读,更多相关《(完整版)高中数学平面向量知识点总结.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修4 之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小零向量:长度为0 的向量,记为0,其方向是任意的,0与任意向量平行单位向量:模为1 个单位长度的向量平行向量(共线向量):方向相同或相反的非零向量相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCbuu u ru uu rrr,则a+br=ABBCuuu ruu u r=ACuuu r(1)aaa00;(2)向量加法满足交换律与结合律;ABBCCDPQQRARuuu ruuu ru uu ruuu ruuu ruuu rL,但这时必须“
2、首尾相连”3、向量的减法:相反向量:与a长度相等、方向相反的向量,叫做a的相反向量向量减法:向量a加上b的相反向量叫做a与b的差,作图法:ba可以表示为从b的终点指向a的终点的向量(a、b有共同起点)4、实数与向量的积:实数与向量a的积是一个向量,记作a,它的长度与方向规定如下:()aa;()当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b=a6、平面向量的基本定理:如果21,ee是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,使:2211eea,其中
3、不共线的向量21,ee叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量ar可表示成axiyjrrr,记作ar=(x,y)。2平面向量的坐标运算:(1)若1122,ax ybxyrr,则1212,abxxyyrr(2)若2211,yxByxA,则2121,ABxxyyuuu r(3)若ar=(x,y),则ar=(x,y)(4)若1122,ax ybxyrr,则1221/0abx yx yrr(5)若1122,ax ybxyrr,则1212a bxxyyrr若abrr,则02121yyxx三平面向量的数量积1两个向量的数量积:已知两个非零向量ar与b
4、r,它们的夹角为,则arbr=ar brcos叫做ar与br的数量积(或内积)规定00arr2向量的投影:brcos=|a barrrR,称为向量br在ar方向上的投影投影的绝对值称为射影3数量积的几何意义:arbr等于ar的长度与br在ar方向上的投影的乘积4向量的模与平方的关系:22|a aaarrrr5乘法公式成立:2222ababababrrrrrrrr;2222abaa bbrrrrrr222aa bbrrrr6平面向量数量积的运算律:交换律成立:a bb arrrr对实数的结合律成立:aba babRrrrrrr分配律成立:abca cb crrrrrrrcabrrr特别注意:(1
5、)结合律不成立:ab ca bcrrrrrr;(2)消去律不成立a ba crrr r不能得到bcrr(3)a brr=0不能得到ar=0r或br=0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax ybxyrr,则arbr=1212x xy y8向量的夹角:已知两个非零向量ar与br,作OAuu u r=ar,OBuuu r=br,则 AOB=(001800)叫做向量ar与br的夹角cos=cos,aba bab?rrrrrr=222221212121yxyxyyxx当且仅当两个非零向量ar与br同方向时,=00,当且仅当ar与br反方向时=1800,同时0r与其它任何
6、非零向量之间不谈夹角这一问题9垂直:如果ar与br的夹角为 900则称ar与br垂直,记作arbr10两个非零向量垂直的充要条件:abab O02121yyxx平面向量数量积的性质一、选择题1在 ABC中,ABAC,D,E分别是 AB,AC的中点,则()A AB 与 AC 共线 B DE 与 CB 共线C AD 与 AE 相等D AD 与 BD 相等2下列命题正确的是()A向量 AB 与 BA 是两平行向量B若 a,b 都是单位向量,则abC若 AB DC,则 A,B,C,D 四点构成平行四边形D两向量相等的充要条件是它们的始点、终点相同3平面直角坐标系中,O 为坐标原点,已知两点A(3,1)
7、,B(1,3),若点 C满足 OC OA OB,其中,R,且 1,则点 C的轨迹方程为()A3x2y110 B(x1)2(y1)2 5 C2xy0 D x2y50 4已知 a、b 是非零向量且满足(a2b)a,(b2a)b,则 a 与 b 的夹角是A6B3C23D565已知四边形ABCD是菱形,点 P在对角线AC上(不包括端点A,C),则 AP A(AB AD),(0,1)B (AB BC),(0,22)C(AB AD),(0,1)D(AB BC),(0,22)6 ABC中,D,E,F分别是 AB,BC,AC的中点,则DF ()(第 1 题)文档编码:CK5L8Y3U6V5 HG3B8X5M1
8、F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10
9、O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y
10、3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5
11、M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A
12、10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L
13、8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8
14、X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6A EF EDB EF DEC EF ADD EF AF7若平面向量a 与 b 的夹角为60,|b|4,(a2b)(a3b)72,则向量 a 的模为()A2 B4 C 6 D12 8 点 O 是三角形 ABC所在平面内的一点,满足 OA OB OB OC OC OA,则点 O 是 ABC的()A三个内角的角平分线的
15、交点B三条边的垂直平分线的交点C三条中线的交点D三条高的交点9在四边形ABCD中,AB a2b,BC 4ab,DC 5a3b,其中 a,b 不共线,则四边形ABCD为()A平行四边形B矩形C梯形D菱形10 如图,梯形 ABCD中,|AD|BC|,EF AB CD 则相等向量是()A AD 与 BCB OA 与 OBC AC 与 BDD EO 与 OF二、填空题11已知向量OA(k,12),OB(4,5),OC(k,10),且 A,B,C 三点共线,则k12已知向量a(x3,x23x4)与 MN 相等,其中M(1,3),N(1,3),则 x13 已知平面上三点A,B,C满足|AB|3,|BC|4
16、,|CA|5,则 AB BC BC CA CA AB 的值等于14给定两个向量a(3,4),b(2,1),且(amb)(ab),则实数m等于15已知 A,B,C三点不共线,O 是 ABC内的一点,若OA OB OC 0,则 O 是 ABC的16设平面内有四边形ABCD和点 O,OA a,OB b,OC c,OD d,若acbd,则四边形ABCD的形状是三、解答题17已知点A(2,3),B(5,4),C(7,10),若点 P 满足 AP AB AC(R),试求 为何值时,点P在第三象限内?(第 10 题)文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:
17、CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 H
18、G3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY
19、9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编
20、码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5
21、 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5
22、ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文
23、档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O618如图,已知ABC,A(7,8),B(3,5),C(4,3),M,N,D 分别是AB,AC,BC的中点,且MN 与 AD 交于 F,求 DF 19如图,在正方形ABCD中,E,F分别为 AB,BC的中点,求证:AFDE(利用向量证明)20已知向量a(cos ,sin ),向量 b(3,1),则|2ab|的最大值(第 18 题)(第 19 题)文档编码:
24、CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 H
25、G3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY9S4W1A10O6文档编码:CK5L8Y3U6V5 HG3B8X5M1F5 ZY
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高中数学 平面 向量 知识点 总结
限制150内