(完整word版)高中数学专题之函数的值域与最值(内附练习及答案).pdf
《(完整word版)高中数学专题之函数的值域与最值(内附练习及答案).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学专题之函数的值域与最值(内附练习及答案).pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学客教育做您身边最负责的教育专家4008117114-1-函数的值域与最值【基本概念】求函数最值的基本方法:1、配方法(二次函数)2、分离常数法(分式函数)3、反函数法(分式函数)4、基本函数性质法5、换元法 换元必换限 (无理函数、高次函数等)6、基本不等式法(耐克函数)7、单调性法(单调区间上的值域与最值)8、数形结合法【典型例题】例 1:求下列函数的值域。(1)2121xyx;(2)lg 12cosyx;(3)221yxx;(4)2211xxyx;(5)2lg612yxxxx;(6)3sin2cosxyx。解:(1)解一 分离常数法:21212211,11,212121xxyyxxxU
2、解二 反函数法:21122112122xyyyxyxyxy(2)基本函数性质法:cos1,112cos1,3xx又12cos0 x12cos0,3,lg3xy(3)换元法:令210tx,则221xt2213221101,24yxxtttty又(4)基本不等式法:令10tx,则21211414ttxtyttt当0t时,4240ytt,当且仅当2t即1x时取等号学客教育做您身边最负责的教育专家4008117114-2-当0t时,4248ytt,当且仅当2t即3x时取等号,80,yU(5)单调性法:1lgyx在 1,2 上单调增且226yxx在 1,2 上单调增12yyy 在 1,2 上单调增5,8
3、lg 2y(6)数形结合法:设cos,sinP、2,3Q,则3sin2cosPQxkyx设2322 32 33212,2331kyk xkk即2 32 32,233y例 2:函数21fxaxa在区间1,1 上的值有正有负,求实数a 的取值范围。解:令210fxaxa若01afx显然不符题意若212110111,3aaaxaaa综上所述,11,3a例 3:已知函数10 xfxtxtt,g t 为 fx 在 0,1 上的最小值,求函数g t 的最大值并画出g t 的图象。解:11fxtxtt10tt即1t时,fx 在 0,1 上递增10g tft10tt即1t时,11fxg t10tt即01t时,
4、fx 在 0,1 上递减1g tft综上所述,,011,11,1ttg tttt图象如图 5-1 所示,由图象可知max1g t例 4:根据下列条件,求实数a 的值。(1)函数221yxaxa 在区间0,1 上有最大值2;图 5-1 文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA
5、10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE
6、6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码
7、:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5
8、HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3
9、ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档
10、编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3学客教育做您身边最负责的教育专
11、家4008117114-3-(2)函数243yaxax在区间4,2 上有最大值7;(3)函数2211yaxax在区间3,22上有最大值3。解:(1)222211yxaxaxaaa若0a则max0121yfaa符合题意若01a则2max15122yfaaaa均不符题意(舍)若1a则max112133yfaaa符合题意综上所述,1a或3a(2)2243234yaxaxa xa若0a则3y不符题意(舍)若0a则max12163473yfaaa符合题意若0a则max23471yfaa符合题意综上所述,1a或13a(3)2222121211124aayaxaxa xaa若max39323132423yf
12、aaa此时对称轴74x符合题意若max12442132yfaaa此时对称轴0 x符合题意若2max2121113242aayfaaa此时对称轴2x不符题意综上所述,23a或12a例 5:已知函数23344fxxx在区间,a b 上的值域为,a b,求实数 a、b 的值。解:2233342144fxxxx区间,a b 在直线2x左侧时,fx 在,a b 上递减则223344433344aababbba(舍)文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7
13、O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2
14、X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P
15、3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1
16、I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6
17、I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B
18、2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8
19、A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3学客教育做您身边最负责的教育专家4008117114-4-区间,a b 在直线2x右侧时,fx 在,a b 上递增则22343424334344aaaabbba(舍)直线2x落在区间,a b 内2114413421274afbfbbbabafbfab(舍)或(舍)综上所述,1a、4b例 6:对于函数fxxD若同时满足以下条件:fx 在 D 上单调递增或单调递减;存在区间,a bD,使 fx 在,a b 上的值域是,a b,则称函数fxxD为“闭函数”。
20、(1)求“闭函数”3yx 符合条件的区间,a b;(2)函数2lgyxx是不是“闭函数”?若是,请求出区间,a b;若不是,请说明理由;(3)若函数2ykx是“闭函数”,求实数k 的取值范围。解:(1)3yx 在 D 上单调递减,则3311abababab即区间,a b 为1,1(2)12.02100122lg1019ffyxxf不是单调函数,故不是“闭函数”(3)由题意知方程2xkx有两个不同的实数解22944142049,220422kkkkkxkxkxkx又文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6
21、I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B
22、2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8
23、A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2
24、A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U
25、1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3E8A1I7O5 HA10L2A6I2X3 ZE6I5U1B2P3文档编码:CW3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 专题 函数 值域 练习 答案
限制150内