(完整word版)简单三角恒等变换典型例题.pdf
《(完整word版)简单三角恒等变换典型例题.pdf》由会员分享,可在线阅读,更多相关《(完整word版)简单三角恒等变换典型例题.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)sincoscossin)sin()s in(s i nc o sc o ss i n(2)sinsincoscos)cos()c o s(s i ns inc o sc o s(3)tantan1tantan)tan(去分母得)t a nt an1)(tan(tantan)tantan1)(tan(tantan2、倍角公式的推导及其变形:(1)cossin2sincoscossin)sin(2sin2sin21cossin2)cos(sin2sin1(2)22sincossinsincoscos)cos(2cos)sin)(coss
2、in(cossincos2cos221cos2)cos1(cossincos2cos22222把 1 移项得2cos22cos1或2cos22cos1【因为是2的两倍,所以公式也可以写成12cos2cos2或2cos2cos12或2c o s2c o s12因为4是2的两倍,所以公式也可以写成12cos24cos2或2c o s24c o s12或2c o s24c o s12】22222sin21sin)sin1(sincos2cos把 1 移项得2sin22cos1或2sin22cos1【因为是2的两倍,所以公式也可以写成2sin21cos2或2s i n2c o s12或2s i n2c
3、 o s12因为4是2的两倍,所以公式也可以写成2sin214cos2或2s i n24c o s12或2s i n24c o s12】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(等等(1)已知,都是锐角,135)cos(,54sin,求sin的值(2)已知,40,1312)45sin(,434,53)4cos(求)sin(的值(提示:)4()45(,只要求出)sin(即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,10103cos,55sin,求角的弧度3、
4、)(T公式的应用(1)求)32tan28tan1(332tan28tan0000的值文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
5、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
6、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
7、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
8、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
9、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
10、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7(2)ABC 中,角 A、B 满足2)tan1)(tan1(BA,求 A+B 的弧度4、弦化切,即已知tan,求与 sin,cos相关的式子的值:化为分式,分子分母同时除以cos或2cos等(1)已知2tan,求2cos2sin3,2cos2sin12cos2sin1,cos
11、sin3cos5sin的值5、切化弦,再通分,再弦合一(1)、化简:)10tan31(50sin0000035sin10cos)110(tan(2)、证明:xxxxxtan)2tantan1(cos22sin6、综合应用,注意公式的灵活应用与因式分解结合化简4cos2sin22文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文
12、档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 简单 三角 恒等 变换 典型 例题
限制150内