2.3幂函数导学案.pdf





《2.3幂函数导学案.pdf》由会员分享,可在线阅读,更多相关《2.3幂函数导学案.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1页第二章基本初等函数课题:2.3 幂函数班级:姓名:问题生成评价单1.幂函数的概念一般地,形如 _(R)的函数称为幂函数(power function),其中是自变量,是常数。2、五个具体幂函数的图象与性质当=1,2,3,12,-1 时,在同一平面直角坐标系内作出这五个幂函数的图象,如图 2-3-1 所示。观察图象可以得到幂函数的特征如下:第2页由以上特征可以得到上述幂函数的性质如下:(1)在区间(0,+)上都有定义,并且图象都通过点(1,1)。(2)如果 0,则幂函数的图象通过原点,并且在区间0,+上是增函数。(3)如果 0,则幂函数在区间(0,+)上是减函数,在第一象限内,当x 从右边
2、趋向原点时,图象在y 轴右方无限地逼近y 轴;当 x 趋于+时,图象在 x 轴上方无限地逼近x 轴。问题解决评价单文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编
3、码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O
4、8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编
5、码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O
6、8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编
7、码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O
8、8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2第3页典例 1(原创题)已知幂函数y=(m2 m-1)223mmx,求此幂函数的解析式,并指出定义域。拓展变式 1 已知函数2211(22)mymmx+2n-3 是幂函数,求,m n的值。典例 2 比较下列各题中两个幂的值的大小:(1)33442
9、.3,2.4;(2)3322(2),(3);(3)6655(0.31),0.35拓展变式2 比较下列各题中两个幂的值的大小:(1)33552.1,;(2)1133(2),(1.4);(3)445523(),()34典例 3 已知函数 y=xa,y=xb,y=xc 的图象如图 2-3-2 所示,则 a、b、c 的大小关系为文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA
10、3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C
11、2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA
12、3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C
13、2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA
14、3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3 函数 导学案

限制150内