(完整word版)高中数学参数方程知识点大全(word文档良心出品).pdf
《(完整word版)高中数学参数方程知识点大全(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学参数方程知识点大全(word文档良心出品).pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点 Po(x0,y0),倾斜角为 的直线 l(如图)的参数方程是atyyatxxsincos00 (t为参数)(2)一般式过定点 P0(x0,y0)斜率 k=tg=ab的直线的参数方
2、程是btyyatxx00(t 不参数)在一般式中,参数t 不具备标准式中t 的几何意义,若a2+b2=1,即为标准式,此时,t 表示直线上动点P到定点 P0的距离;若a2+b21,则动点 P到定点 P0的距离是22bat.直线参数方程的应用设过点 P0(x0,y0),倾斜角为 的直线 l 的参数方程是atyyatxxsincos00(t 为参数)若 P1、P2是 l 上的两点,它们所对应的参数分别为t1,t2,则(1)P1、P2两点的坐标分别是(x0+t1cos,y0+t1sin)(x0+t2cos,y0+t2sin);(2)P1P2=t1-t2;(3)线段 P1P2的中点 P所对应的参数为t
3、,则t=221tt中点 P到定点 P0的距离 PP0=t=221tt(4)若 P0为线段 P1P2的中点,则t1+t2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是sincosrbyrax(是参数)是动半径所在的直线与x 轴正向的夹角,0,2(见图)(2)椭圆椭圆12222byax(ab0)的参数方程是sincosbyax (为参数)椭圆12222byay(a b0)的参数方程是sincosaybx(为参数)3.极坐标极坐标系在平面内取一个定点O,从 O引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,
4、O 点叫做极点,射线 Ox叫 做极轴.极点;极轴;长度单位;角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设 M点是平面内任意一点,用表示线段OM的长度,表示射线Ox 到OM的角度,那么 叫做 M点的极径,叫做 M点的极角,有序数对(,)叫做 M点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件极坐标系中的极点与直角坐标系中的原点重合;极轴与 x 轴的正半轴重合两种坐标系中取相同的长度单位.(2)互化公式sincosyx)0(222xxytgyx三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例 1 在圆 x2+y2-4x-2y-20=0上求
5、两点A和 B,使它们到直线4x+3y+19=0 的距离分别最短和最长.解:将圆的方程化为参数方程:文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:
6、CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 H
7、N4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 Z
8、T2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编
9、码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9
10、 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10
11、 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6sin51cos52yx(为参数)则 圆 上 点P坐 标 为(2+5cos,1+5sin),它 到 所 给 直 线 之 距 离d=223430sin15cos120故
12、当 cos(-)=1,即=时,d 最长,这时,点 A坐标为(6,4);当 cos(-)=-1,即=-时,d 最短,这时,点B坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986 年以来每年都有一个小题,而且都以选择填空题出现.例 2 极坐标方程=cossin321所确定的图形是()A.直线B.椭圆C.双曲D.抛 物线解:=)6sin(1211)cos2123(121(三)综合例题赏析例 3 椭圆的两个焦点坐标是是参数)(sin51cos3yx()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1
13、),(-1,-1)解:化为普通方程得125)1(9)3(22yxa2=25,b2=9,得 c2,c=4.F(x-3,y+1)=F(0,4)在 xOy坐标系中,两焦点坐标是(3,3)和(3,-5).应选 B.例 4参数方程表示)20()sin1(212sin2cosyxA.双曲线的一支,这支过点(1,21)B.抛物线的一部分,这部分过(1,21)文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码
14、:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9
15、HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10
16、ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档
17、编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N
18、9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y1
19、0 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6
20、文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6C.双曲线的一支,这支过(-1,21)D.抛物线的一部分,这部分过(-1,21)解:由参数式得x2=1+sin=2y(x 0)即 y=21x2(x 0).应选 B.例 5 在方程cossinyx(为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32)C.(21,21)D.(1,0)解:y=cos2=1-2sin2=1-2x2将 x=21代入,得y=21应选 C.例 6 下列参数方程(t 为参数)与普通方程x2-y=0 表示同一曲线的方程是()A.tytx B.tytx2coscosC.ttytg
21、tx2cos12cos1D.ttytgtx2cos12cos1解:普通方程x2-y 中的 xR,y0,A.中 x=t 0,B.中 x=cost -1,1 ,故排除 A.和 B.C.中 y=tt22sin2cos2=ctg2t=2211xttg=,即 x2y=1,故排除C.应选 D.例 7 曲线的极坐标方程=sin 化 成直角坐标方程为()A.x2+(y+2)2=4 B.x2+(y-2)2=4 C.(x-2)2+y2=4 D.(x+2)2+y2=4解:将=22yx,sin=22yxy代入 =4sin ,得 x2+y2=4y,即 x2+(y-2)2=4.应选 B.例 8 极坐标 =cos(4)表示
22、的曲线是()A.双曲线B.椭圆C.抛物线D.圆文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 Z
23、T2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编
24、码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9
25、 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10 ZT2X9V1W1G6文档编码:CF1C6C8O9N9 HN4H7H9T7Y10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 参数 方程 知识点 大全 文档 良心 出品
限制150内