(完整word版)高中抛物线知识点归纳总结与练习题及答案(word文档良心出品).pdf
《(完整word版)高中抛物线知识点归纳总结与练习题及答案(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中抛物线知识点归纳总结与练习题及答案(word文档良心出品).pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、抛物线专题复习知识点梳理:抛物线)0(22ppxy)0(22ppxy)0(22ppyx)0(22ppyx定义平面内与一个定点F和一条定直线 l 的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l 叫做抛物线的准线。MFM=点 M到直线 l 的距离 范围0,xyR0,xyR,0 xR y,0 xR y对称性关于x轴对称关于y轴对称焦点(2p,0)(2p,0)(0,2p)(0,2p)焦点在对称轴上顶点(0,0)O离心率e=1 准线方程2px2px2py2py准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离2p焦点到准线的距离p焦半径11(,)A xy12pAFx12pAFx12
2、pAFy12pAFyx y O l F x y O l F l F x y O x y O l F 焦 点弦长AB12()xxp12()xxp12()yyp12()yyp焦点弦AB 的几条性质11(,)A x y22(,)B xy以AB为直径的圆必与准线 l 相切若AB的倾斜角为,则22sinpAB若AB的倾斜角为,则22cospAB2124px x212y yp112AFBFABAFBFAFBFAFBFp切线方程00()y yp xx00()y yp xx00()x xp yy00()x xp yy一直线与抛物线的位置关系直线,抛物线,消 y 得:(1)当 k=0 时,直线 l 与抛物线的对
3、称轴平行,有一个交点;(2)当 k0 时,0,直线 l 与抛物线相交,两个不同交点;=0,直线 l 与抛物线相切,一个切点;0,直线 l 与抛物线相离,无公共点。(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)二关于直线与抛物线的位置关系问题常用处理方法直线 l:bkxy抛物线,)0(p联立方程法:pxybkxy220)(2222bxpkbxkox 22,B xyFy11,A x y文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A
4、3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10
5、A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX1
6、0A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX
7、10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:C
8、X10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:
9、CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码
10、:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4设 交 点 坐 标 为),(11yxA,),(22yxB,则 有0,以 及2121,xxxx,还 可 进 一 步 求 出bxxkbkxbkxyy2)(212121,2212122121)()(bxxkbxxkbkxbkxyy在涉及弦长,中点,对称,面积等问题时,常
11、用此法,比如相交弦 AB的弦长2122122124)(11xxxxkxxkABak21或2122122124)(1111yyyykyykABak21抛物线练习1、已知点 P 在抛物线y2=4x 上,那么点P 到点 Q(2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点 P 的坐标为2、已知点P是抛物线22yx上的一个动点,则点P到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为3、直线3yx与抛物线24yx交于,A B两点,过,A B两点向抛物线的准线作垂线,垂足分别为,P Q,则梯形APQB的面积为4、设O是坐标原点,F是抛物线22(0)ypx p的焦点,A是抛物线上的一点
12、,FA与x轴正向的夹角为60,则OA为5、抛物线24yx的焦点为F,准线为l,经过F且斜率为3的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是6、已知抛物线2:8Cyx的焦点为F,准线与x轴的交点为K,点A在C上且2AKAF,则AFK的面积为7、已知双曲线22145xy,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为8、在平面直角坐标系xoy中,有一定点(2,1)A,若线段OA的垂直平分线过抛物线22(0)ypx p则该抛物线的方程是。9、在平面直角坐标系xoy中,已知抛物线关于x轴对称,顶点在原点O,且过点 P(2,4),则该抛物线的方程是10、抛物线2
13、yx上的点到直线4380 xy距离的最小值是11、已知抛物线y2=4x,过点 P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是12、已知点11(,)A x y,22(,)B xy12(0)x x是抛物线22(0)ypx p上的两个动点,O是坐标原点,向量文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7
14、HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7
15、 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X
16、7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10
17、X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C1
18、0X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C
19、10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8
20、C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4OA,OB满足OAOBOAOB.设圆C的方程为221212()()0 xyxxxyyy。(1)证明线段AB是圆C的直径;(2)当圆 C 的圆心到直线x-2y=0 的距离的最小值为2 55时,求 p 的值。解:(1)证明:22,()()OAOBOAOBOAOBOAOB,222222OAOA OBOBOAOA OBOB,整理得:0OA OB,12120 xxyy(1)以
21、线段 AB 为直径的圆的方程为2222121212121()()()()224xxyyxyxxyy,展开并将(1)代入得:221212()()0 xyxxxyyy,故线段AB是圆C的直径(2)解:设圆 C 的圆心为 C(x,y),则121222xxxyyy圆心 C 到直线 x-2y=0 的距离为d,则1212|()|25xxyyd2211222,2(0)ypxypxp,22121224y yx xp,又因12120 xxyy,1212xxyy,22121224y yyyp,12120,0 xxyy,2124yyp,2212122221212121|()()|24()8|454 5yyyyyyy
22、 yp yyppdp2212(2)44 5yyppp,当122yyp时,d 有最小值5p,由题设得2 555p,2p.13、已知正三角形OAB的三个顶点都在抛物线22yx上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为22(47cos)(7cos)1xy,过圆M上任意一点P分别作圆C的两条切线文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N4文档编码:CX10A3B8C10X7 HF10R1E7I8Z8 ZK1Y5X2Y2N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中 抛物线 知识点 归纳 总结 练习题 答案 文档 良心 出品
限制150内