(完整word版)高考二次函数专题(word文档良心出品).pdf





《(完整word版)高考二次函数专题(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高考二次函数专题(word文档良心出品).pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数一填空题:1 在区间 12,2上,函数f(x)=x2-px+q 与 g(x)=2x+1x2在同一点取得相同的最小值,那么 f(x)在12,2上的最大值是 4 2设函数f(x)=x2+bx+cx02 x0,若 f(-4)=f(0),f(-2)=-2,则关于x 的方程 f(x)=x 的解的个数为 3(-2,-1,2)3函数2(0,)yxbxc x是单调函数的充要条件的是 b0 4对于二次函数22()42(2)21f xxpxpp,若在区间1,1内至少存在一个数c 使得()0f c,则实数p的取值范围是5已知方程2(1)10 xa xab的两根为12x x、,并且1201xx,则ba的取值范
2、围是6若函数f(x)=x2+(a+2)x+3,x a,b 的图象关于直线x=1 对称,则b=7若不等式x4+2x2+a2-a-2 0 对任意实数x恒成立,则实数a 的取值范围是8已知函数f(x)=|x2-2 ax+b|(xR),给出下列命题:f(x)必是偶函数;当f(0)=f(2)时,f(x)的图象必关于直线x=1 对称;若a2-b0,则 f(x)在区间 a,+)上是增函数;f(x)有最大值|a2-b|;其中正确命题的序号是9已知二次函数2()f xaxbxc,满足条件(2)(2)fxfx,其图象的顶点为A,又图象与x轴交于点B、C,其中B 点的坐标为(1,0),ABC的面积S=54,试确定这
3、个二次函数的解析式10 已知ab、为常数,若22()43,()1024f xxxf axbxx,则5ab11 已知函数2()21,f xxx若存在实数t,当1,xm时,()f xtx恒成立,则实数m的最大值为12设()f x是定义在R上的奇函数,且当0 x时,2()f xx,若对任意的2xtt,不等式()2()f xtf x恒成立,则实数t的取值范围是13设2 (|1)()(|1)xxf xxx,()g x是二次函数,若()f g x的值域是0,则()g x的值域是14函数2254()22xxf xxx的最小值为二、解答题:15已知函数2213222fxxmxmm,当(0,)x时,恒有()0f
4、 x,求 m 的取值范围16设 a 为实数,函数f(x)=x2+|x-a|+1,xR(1)讨论函数f(x)的奇偶性;(2)求函数f(x)的最小值17已知2()(0)fxaxbxc a的图象过点(-1,0),是否存在常数a,b,c,使得不等式21()2xxf x对一切实数x 都成立文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U
5、6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10
6、G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码
7、:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8
8、E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4
9、 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K
10、3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q
11、4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G718已知a 是实数,函数2()223f xaxxa,如果函数()yf x在区间1,1上有零点,求a的取值范围19设函数f(x)=,22aaxxc其中 a 为实数()若 f(x)的定义域为R,求 a 的取值范围;文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X
12、7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA
13、10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7
14、M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 Z
15、A1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5
16、C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文
17、档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF
18、4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7()当 f(x)的定义域为R时,求 f(x)的单减区间20已知函数2()1f xxx,,是方程 f(x)=0 的两个根(),()fx 是 f(x)的导数;设11a,1()()nnnnf aaafa(n=1,2,)(1)求,的值;(2)(理做)证明:对任意的正整数n,都有na;(3)记lnnnnaba(n=1,2,),求数列 bn 的前 n 项和 Sn1二次函数答案新海高级中学杨绪成舒燕一、填空题:文档编码:CF4I8E9X7G4 HA10K3
19、A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4
20、 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6
21、G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G
22、7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:
23、CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E
24、9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4
25、HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G7文档编码:CF4I8E9X7G4 HA10K3A7M3Q4 ZA1U6G5C10G71.在区间 12,2上,函数f(x)=x2-px+q 与 g(x)=2x+1x2在同一点取得相同的最小值,那么 f(x)在12,2上的最大值是 4 2.设函数 f(x)=x2+bx+cx02 x0,若 f(-4)=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高考 二次 函数 专题 文档 良心 出品

限制150内