D365可降阶高阶微分方程.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《D365可降阶高阶微分方程.ppt》由会员分享,可在线阅读,更多相关《D365可降阶高阶微分方程.ppt(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录 上页 下页 返回 结束 可降阶高阶微分方程 第六节(5)一、一、型的微分方程型的微分方程 二、二、型的微分方程型的微分方程 三、三、型的微分方程型的微分方程 第三章 目录 上页 下页 返回 结束 一、一、令因此即同理可得依次通过 n 次积分,可得含 n 个任意常数的通解.型的微分方程型的微分方程 目录 上页 下页 返回 结束 例例1.解解:目录 上页 下页 返回 结束 例例2.质量为 m 的质点受力F 的作用沿 Ox 轴作直线运动,在开始时刻随着时间的增大,此力 F 均匀地减直到 t=T 时 F(T)=0.如果开始时质点在原点,解解:据题意有t=0 时设力 F 仅是时间 t 的函数:F=
2、F(t).小,求质点的运动规律.初速度为0,且对方程两边积分,得 目录 上页 下页 返回 结束 利用初始条件于是两边再积分得再利用故所求质点运动规律为目录 上页 下页 返回 结束 型的微分方程型的微分方程 设原方程化为一阶方程设其通解为则得再一次积分,得原方程的通解二、二、目录 上页 下页 返回 结束 例例3.求解解解:代入方程得分离变量积分得利用于是有两端再积分得利用因此所求特解为目录 上页 下页 返回 结束 三、三、型的微分方程型的微分方程 令故方程化为设其通解为即得分离变量后积分,得原方程的通解目录 上页 下页 返回 结束 例例5.求解代入方程得两端积分得(一阶线性齐次方程)故所求通解为解解:目录 上页 下页 返回 结束 例例7.解初值问题解解:令代入方程得积分得利用初始条件,根据积分得故所求特解为得目录 上页 下页 返回 结束 思考与练习思考与练习1.方程如何代换求解?答答:令或一般说,用前者方便些.均可.有时用后者方便.例如,2.解二阶可降阶微分方程初值问题需注意哪些问题?答答:(1)一般情况,边解边定常数计算简便.(2)遇到开平方时,要根据题意确定正负号.3.求微分方程方程的通解?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- D365 可降阶高阶 微分方程
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内