《期望与方差的性质》PPT课件.ppt
《《期望与方差的性质》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《期望与方差的性质》PPT课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1E(X+Y)=E(X)+E(Y)E(X Y)=E(X)E(Y).B.数学期望的性质数学期望的性质E(aX)=a E(X)E(C)=C 当当X,Y 相互独立时相互独立时,2性质性质 4 的逆命题不成立,的逆命题不成立,即即若若E(X Y)=E(X)E(Y),X,Y 不一定不一定相互独立相互独立.反例反例X Y pij-1 0 1-1 0 10p jpi注注3X Y P-1 0 1但但4若若X 0,且,且EX 存在,则存在,则EX 0。推论推论:若若 X Y,则,则 EX EY。证明:设证明:设 X 为连续型,密度函数为为连续型,密度函数为f(x),则则由由X 0 得:得:所以所以证明证明:由已
2、知:由已知 Y-X0,则,则 E(Y-X)0。而而E(Y-X)=E(Y)-E(X),所以,所以,E(X)E(Y)。5性质性质2 2和和3 3性质性质4 4例例1.1.设设 XN(10,4),YU1,5,且,且X与与Y相互独立,求相互独立,求 E(3X2XYY5)。解:解:由已知,由已知,有有 E(X)10,E(Y)3.6例例2.(.(二项分布二项分布 B(n,p)设单次实验成功的概率是设单次实验成功的概率是 p,问,问n次独立重复试验中,期望几次成功?次独立重复试验中,期望几次成功?解解:引入引入则则 X X1+X2+Xn 是是n次试验中的成功次数。次试验中的成功次数。因此因此,这里,这里,X
3、B(n,p)。7例例3.将将4 个可区分的球随机地放入个可区分的球随机地放入4个盒子中个盒子中,每盒每盒容纳的球数无限容纳的球数无限,求空着的盒子数的数学期望求空着的盒子数的数学期望.解一解一:设设 X 为空着的盒子数为空着的盒子数,则则 X 的概率分布为的概率分布为X P0 1 2 38解二解二:再引入再引入 X i ,i=1,2,3,4.Xi P 1 09例例4.4.将将n个球放入个球放入M个盒子中个盒子中,设每个球落入各设每个球落入各个盒子是等可能的个盒子是等可能的,求有球的盒子数求有球的盒子数X的期望。的期望。解解:引入随机变量引入随机变量:则则 X=X1+X2+XM ,于是于是 E(
4、X)=E(X1)+E(X2)+E(XM).每个随机变量每个随机变量Xi 都服从两点分布都服从两点分布,i=1,2,M.10因为因为每个球落入每个盒子是等可能的均为每个球落入每个盒子是等可能的均为1/M,所以,所以,对第对第i个盒子个盒子,没有一个球落入这个盒子没有一个球落入这个盒子内的概率为内的概率为(1-(1-1/M).).故,故,n个球都不落入这个盒子内的概率为个球都不落入这个盒子内的概率为(1-1/M)n,即即:11注:注:129页以此题为模型页以此题为模型。12例例5.5.用某台机器生产某种产品,已知正品率随用某台机器生产某种产品,已知正品率随着该机器所用次数的增加而指数下降,即着该机
5、器所用次数的增加而指数下降,即P第第k次生产出的产品是正品次生产出的产品是正品=假设每次生产假设每次生产100100件产品,试求这台机器前件产品,试求这台机器前1010次生产中平均生产的正品总数。次生产中平均生产的正品总数。解:解:设设X是前是前1010次生产的产品中的正品数,并设次生产的产品中的正品数,并设13例例5.5.(续)(续)14例例6.某厂家的自动生产线,某厂家的自动生产线,生产一件正品的生产一件正品的概率为概率为 p(0p1),生产一件次品的概率为,生产一件次品的概率为q=1-p。生产一件产品的成本为。生产一件产品的成本为c元,正品的元,正品的价格为价格为s元,次品不能出售。这样
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 期望与方差的性质 期望 方差 性质 PPT 课件
限制150内