《数项级数收敛性的判别(共14页).doc》由会员分享,可在线阅读,更多相关《数项级数收敛性的判别(共14页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上班级:数学091 姓名:韩海飞数项级数收敛性的判别摘要:文章对数项级数收敛性的判别方法进行了归纳总结,得到一般的解题思路.关键词: 判别方法 归纳总结 数项级数 敛散性 解题思路引言: 在讲解数项级数敛散性判别方法时,每讲一种判别方法,学生按照指定的判别方法进行解题,一般都能很容易求得结果,而当把多种判别方法讲完,再让学生作综合判别时, 学生要么束手无策,要么选择判别方法时带有盲目性 ,拿作判别方法进行实验性解题,只要求得结果,不问方法的简单与繁琐,而不是先从简单方法入手,往往用一种简单的方法就可以轻松解题,却用较繁琐方法费了九牛二虎之力,结果还不一定正确,造成这种情
2、况的主要原因主要是学生对所学的判别方法的使用条件及特点不太熟悉,解题思路比较乱 .所以在讲解完常数项级数敛散性判别方法之后,非常有必要归纳总结一下.一、定义定义1:设有数列 表达式 (1)称为数项级数,可记为 ,其中 称为数项级数(1)的第n项或一般项。定义2: 称为级数(1)的第n个部分和,数列 称为它的部分和数列。定义3:设 是级数(1)的部分和数列,若则说级数(1)的和是S,这时也说级数(1)是收敛(于S)的。记为: 。若 是发散数列,则称级数(1)发散。余项: 定义4:绝对收敛:若收敛,则称级数绝对收敛 条件收敛:若发散,则称级数条件收敛二、性质定理定理12.2 若级数与都收敛,则对任
3、意常数,级数也收敛.定理12.3 去掉、增加或改变级数的有限个项并不改变级数的敛散性.定理12.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.三、分类1、等比级数(几何级数):2、级数:3、正项级数: 若,则称为正项级数4、一般级数:任意 ,则称为一般级数三、等比级数收敛性的判别法等比级数(几何级数) , 时,级数收敛 时,级数发散四、级数收敛性判别法:级数(1)当时,级数发散(2)当时,级数收敛例:为p-级数,p=21,显然此级数是收敛的.五、正项级数收敛性的判别法(1)比较原则:设与是两个正项级数,若(1) 当时,两级数同时收敛或同时发散;(2) 当且级数收敛时,级
4、数也收敛;(3) 当且级数发散时,级数也发散;例: 判别级数的敛散性解:由于 ,根据比较原则,及调和级数发散,所以级数也发散.(2)比式判别法(极限形式)若为正项级数,且则 (1)当时,级数也收敛;(2)当时,或时,级数发散;注:当时,)比式判别法不能对级数的敛散性作出判断,因为它可能是收敛的,也可能是发散的.例如,级数与,它们的比式极限都是 但是收敛的,而是发散的.(3)根式判别法(极限形式)若为正项级数,且则(1)当时,级数收敛(2)当时,级数发散注:当时,根式不能对级数的敛散性作出判断例如,级数与,二者都有,但是收敛的,而是发散的.但是收敛的,而是发散的.例:判别级数的敛散性解:由于 故
5、用比式判别法无法判定此级数的敛散性,现在用根式判别法来考察这个级数,由于 所以 由根式判别法知原级数收敛.(4)积分判别法:设是上非负递减函数那么正项级数与非正常积分同时收敛或同时发散;例:讨论级数的敛散性 解:研究非正常积分,由于当时收敛 时发散,由积分判别法级数在时收敛 时发散(5)拉贝判别法(极限形式)若为正项级数,且存在,则(1)当时,级数收敛;(2)当时,级数发散;(3)当时拉贝判别法无法判断.例:讨论级数当时的敛散性解:无论哪一个值,级数的比式极限都有所以用比式判别法都无法判别此级数的敛散性,现在应用拉贝判别法来讨论,当时,由于所以级数是发散的.当时,由于这时,拉贝判别法也无法对此
6、级数作出判断,当时,由于所以级数收敛.六、一般级数收敛性的判别法(1)级数若,则此级数发散. 例:判断级数的敛散性解:由于 ,所以原级数发散(2)(基本判别法)如果正项级数的部分和数列具有上界,则此级数收敛. 例:判定正项级数的敛散性. 分析:本题无法直接使用定义、柯西判别法、达朗贝尔判别法,或比较判别法以及其他的判别法进行判断,因此可选用基本定理进行判断.解 记,则级数的前项和所以原级数的部分和数列有上界,于是原级数收敛. (3)柯西收敛准则级数收敛的充要条件:当时,有: 例:证明级数的收敛证明:由于=N 及任意自然数p,由上式就有0)的敛散性.解:对于数列 来说,当x0时,0=1又即数列
7、是单调有界的,又 收敛,由阿贝尔判别法知道级数收敛.(7)狄利克雷判别法:设级数若单调递减,且又级数的部分和数列有界,则级数收敛.例: 证明:若数列 具有性质: ,则级数 对任何x都收敛.证明:因为=当x时,故有: 所以级数 的部分和数列当x时有界,由狄利克雷判别法得级数收敛.以上方法是常见的方法,接下来我们来看由比较原则衍生出的几种不常见的方法。1. 不等式的利用 在此我们常用到的不等式有以下几种:(1);(2);(3);(4) 个人认为,前三个不等式大家都用得比较熟练,最后一个不等式不太能在做题时想到.对于些题目看似很复杂,但利用不等式后就会豁然开朗.此处是将原数放大,主要运用比较准则.例
8、: ,且收敛,证明绝对收敛?(此题正是利用了不等式,轻松地证明了此题.)解:又 、收敛,则收敛,故绝对收敛.例: 判别级数的敛散性.解:利用不等式 有因为收敛,故收敛.2. 等价量法 等价量法实际上应用的就是无穷小或大的等价代换,方法简单易掌握,同样也是一种放大缩小的应用.例:判别级数的敛散性.可利用等价代换,但这里先将原式前项改写为的形式.解:当时,=. 而收敛,故由比较原则知原级数收敛.3. Taylor展开式 Taylor展开式看似与级数完全不沾边,但在以前的学习中,Taylor公式还用于计算函数近似值的问题,正是这个桥梁连接了两者.常用函数的Maclaurin公式是在解题中最常用.如下
9、例:例:判别级数的敛散性.解: 原级数发散4. 对数判别法 此方法对判别“幂指型”或含“”级数很有效.首先介绍一下这个定理:定理(对数判别法) 设为正项级数,若有,使当时, (5) 则收敛;若时, (6) 则发散.证明如下:若时,不等式(5)成立,则. 由于级数收敛,所以收敛.同理可证当不等式(6)成立时, 发散. 例:判别级数的敛散性.解:.对,必存在,使当时, , 故原级数收敛.例:判别级数的敛散性.解: 由LHospital法则知, . 故对,存在,使当时, 原级数收敛.5. 拆项法 有一种应用广泛,形式多变,方便灵活的方法,即将一般项通过等价变换、有理化、三角函数基本公式等拆成几项之差
10、,大大降低了难度,解决了无从下手的窘境.这也是一种常见的方法,容易掌握.例:判别级数的敛散性.解:而 收敛;而对于,当时收敛,当时发散. 综上可知,原级数当当时收敛,当时发散. 例:判断级数的敛散性,若收敛,是条件收敛还是绝对收敛?解: ,得到一个交错级数 则易知级数收敛,但其绝对值级数发散. 故原级数条件收敛.总结了数项级数敛散性的判别法和解题思路后,我们就能更好地掌握如何先则数项级数敛散性的判别法,做到避繁就简,思路清晰,起到事半功倍的效果. 参考文献:1华东师范大学数学系编数学分析(第三版)北京大学高等教育出版社,19912数学分析习题解析下册,陕西师范大学出版社,19933 刘羽.正项
11、级数敛散性的判别法研究J.网络财富,2009.23(23):98-101.4 斯琴.正项级数的敛散性判别法J. 河套大学学报,2009.6(2): 18-22.5 杨钟玄.关于正项级数敛散性判别法及其联系J.天水师专学报,1999,19(3):80-83.6费定晖,周学圣,郭大钧,等.吉米多维奇数学分析习题集题解(四) M. 2版. 济南: 山东科学技术出版社, 1999:2- 3,38- 41. The Induction about Convergence Criterions of Constant Term Series and the Analysis of Thinks of Solution Abstract: The article induced convergence criterions of constant term series and obtained general thinking of solution.Keywords: constant term series; convergence , decision, methods; induction; thinking. 专心-专注-专业
限制150内