数字图像处理在指纹识别中的应用(共10页).doc
《数字图像处理在指纹识别中的应用(共10页).doc》由会员分享,可在线阅读,更多相关《数字图像处理在指纹识别中的应用(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数字图像处理在指纹识别技术中的应用电信072班 镇振 摘 要20世纪60年代,人们开始着手研究利用计算机来处理图形和图像信息。在这一阶段,由于图像存储成本高、处理设备昂贵、提取的有效图像信息较少,图像处理在当时应用面很狭窄。如今,随着计算机的普遍使用,人类已经进入了一个高速发展的信息时代,图像处理技术愈来愈成为科学技术各领域中必不可少的手段,在短短50年间就迅速地发展成为一门独立的有强大生命力的学科,并取得了巨大的成就。它的应用领域包括航空航天、生物医学工程、工业检测、公安司法、军事制导和文化艺术等。其中,指纹识别正是随着数字图像处理和模式识别等学科的发展而逐步形成的
2、一门新兴身份认证技术。传统的利用密码、证件作为身份识别的方式具有易遗忘、易破解、易丢失、易伪造等特点,已不再符合现代数字社会的需求。指纹,作为人体独一无二的生理特征,虽然只是人体皮肤的一小部分,但是它的纹理复杂度可以提供用于识别的足够特征,具有极高的安全性,并且指纹还具有易获取、无侵犯性、唯一性和不变性等优点,使其成为生物识别技术中的焦点。关键词:数字图像处理 指纹识别一、指纹识别技术概述1.1 概述生物识别技术(Biometric Identification Technology)是利用人体生物特征进行身份认证的一种技术。由于每个人的生物特征都有与其他人不同的唯一性和在一定时期内不变的稳定
3、性,不易伪造和假冒,所以利用生物识别技术进行身份认定,安全,可靠,准确。常见的生物识别技术主要有指纹、脸形、虹膜、视网膜、手写体、声音、掌纹、手形和脸部热谱图9种,指纹识别是生物识别技术的一种。迄今为止,最为人们所关注、最为成熟的生物识别技术就是指纹识别。1.2 指纹识别系统分类自动指纹识别系统的工作模式可以分为2类: 验证模式(verification)和辨识模式(identification)。验证就是通过把一个现场采集到的指纹与一个已经登记的指纹进行一对一的比对(one to one matching),来确认身份的过程。验证过程如图1所示。 辨识则是把现场采集到的指纹同指纹数据库中的指
4、纹逐一对比,从中找出与现场指纹相匹配的指纹。这也叫做“一对多匹配(one to many matching)”。指纹辨识过程如图2所示。图1 指纹验证过程图2 指纹辨识过程二、指纹识别系统工作原理2.1 概述一般来讲,自动指纹识别算法体系大致由指纹图像采集、指纹图像预处理、特征理、特征提取、指纹分类和指纹比对几个部分组成。2.2 指纹图像采集 较早出现的活体指纹采集设备是光电式的。后来出现的电容式和电感式的采集设备。到目前为止,光学采集头提供了更加可靠的解决方案。通过改进原来的光学取像技术,新一代的光学指纹采集器更是以无可挑剔的性能与非常低的价格使电容方案相形见绌。光学技术需要一个光源从棱镜反
5、射到按在取像采集头上的手指,光线照亮指纹从而采集到指纹。光学取像设备依据的是光的全反射原理(FTIR)。2.3 预处理 通常,指纹采集器采集到的指纹是低质量的,存在的噪声较多。通过预处理,将采集到的指纹灰度图像通过预滤波、方向图计算、基于方向图的滤波、二值化、细化等操作转化为单像素宽的脊线线条二值图像,基于此二值图像对指纹的中心参考点,以及细节特征点特征等进行提取。指纹预处理的一般过程如图所示。图4 预处理的一般过程2.4 特征提取 指纹的特征点分为全局特征(如奇异点、中心点)和局部特征(指纹细节点)。在考虑局部特征的情况下,英国的E.R.Herry认为,在比对时只要 13个特征点重合,就可以
6、确认是同一个指纹。指纹的细节特征可以有150种之多,但这些特征出现的概率并不相等,很多特征是极其罕见的。 一般在自动指纹识别技术中只使用两种细节特征:纹线端点与分叉点。纹线端点指的是纹线突然结束的位置,而纹线分叉点则是纹线突然一分为二的位置。大量统计结果和实际应用证明,这两类特征点在指纹中出现的机会最多、最稳定,而且比较容易获取。2.5 指纹分类 指纹分类的主要目的是方便大容量指纹库的管理,减小搜索空间,加速指纹匹配过程。指纹分类技术越完善,能够划分的类型越细,样本数据库每个类别中所包含的样本数量就会越少,对一次识别任务来讲,需要比对的次数和时间开销就会越少。在大部分研究中,指纹一般分为漩涡型
7、(whorl)、左环型(left loop)、右环型(right loop)、拱型(arch)、尖拱型(tented arch)5类。对于要求严格的指纹识别系统,仅按此分类 是不够的,还需要进一步更加细致地分类。2.6 指纹比对指纹比对是通过对2枚指纹的比较确定它们是否同源的过程,即2枚指纹是否来源于同一手指。指纹比对主要是依靠比较2枚指纹的局部纹线特征和相互关系决定指纹的唯一性。细节特征的集合形成一个拓扑结构,指纹比对的过程实际就是2个拓扑结构的匹配问题。由于采集过程中的变形、特征点定位的偏差、真正特征点的缺失和伪特征点的存在等问题,即使是2枚同源的指纹,所获得的特征信息也不可能完全一样,指
8、纹比对的过程必然是一个模糊匹配问题。 2.7 可靠性问题计算机处理指纹图像时,只是涉及了指纹有限的信息,而且比对算法不是精确的匹配,因此其结果不能保证100%准确。指纹识别系统的重要衡量标志是识别率,它主要由2部分组成:拒判率(FRR,false reject rate)和误判率(FAR,false accept rate)。右图的ROC(Receiver Operating Curve)曲线给出 FAR和 FRR 之间的关系图5 FAR和FRR之间的关系三、指纹识别模块算法3.1 预处理指纹的特征是指指纹脊线的某种构型,如端点、分叉等。为了提取这些特征,必须先把灰度的指纹图处理为二值线型图,
9、此过程即指纹图像预处理。图像预处理是指纹自动识别过程的第一步,它的好坏直接影响指纹识别的效果。图像预处理通常包括增强、分割、细化等几个步骤。增强是通过平滑、锐化、灰度修正等手段,改善图像的视觉效果;分割则是把图像划分为若干个区域,分别对应不同的物理实体;细化则是把分割后的图像转为只有一个像素点宽度的线型图,以便提取特征。3.2 方向滤波算法 指纹图像获取时,由于噪音及压力等的不同影响,将会导致2种破坏纹线的情况:断裂及叉连。这2种干扰必须清除,否则会造成假的特征点,影响指纹的识别。为了消除干扰及增强纹线,针对指纹纹线具有较强方向性的特点,可以采用方向滤波算法对其进行增强,为此必须利用指纹图上各
10、个像素点上的局部方向性3.2.1 方向图的获取方向图是用每个像素点的方向来表示指纹图像。像素点的方向是指其灰度值保持连续性的方向,可以根据像素点邻域中的灰度分布判断,反映了指纹图上纹线的方向。各方向之间夹角为/8,以18表示。每个像素点上方向值的判定是在其NN邻域窗口中得到的。邻域窗口的尺寸并无严格限定,但其取值与图像的分辨率直接有关。如果邻域取得过小,则难以从其中的灰度分布得出正确的方向性;若取得过大,则在纹线曲率较大的区域窗口内纹线方向不一致,会对以后的滤波操作造成不良影响。一般可取N为12个纹线周期。实验中取N=9,该99邻域窗口如图所示。分别求出沿各个方向的灰度变化:式中, d代表与d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 指纹识别 中的 应用 10
限制150内