正弦定理余弦定理综合应用-解三角形经典例题(学生)(共5页).doc
《正弦定理余弦定理综合应用-解三角形经典例题(学生)(共5页).doc》由会员分享,可在线阅读,更多相关《正弦定理余弦定理综合应用-解三角形经典例题(学生)(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、知识梳理1内角和定理:在中,;面积公式: 在三角形中大边对大角,反之亦然.2正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一: (解三角形的重要工具)形式二: (边角转化的重要工具)形式三: 形式四:3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: (解三角形的重要工具)形式二: 二、方法归纳 (1)已知两角A、B与一边,由A+B+C=及,可求出角C,再求、. (2)已知两边、与其夹角A,由2=2+2-2cosA,求出,再由余弦定理,求出角B、C. (3)已知三边、,由余弦定理可求出角A、B、C
2、. (4)已知两边、及其中一边的对角A,由正弦定理,求出另一边的对角B,由C=-(A+B),求出,再由求出C,而通过求B时,可能出一解,两解或无解的情况=sinA有一解 sinA有两解 有一解 有一解三、课堂精讲例题问题一:利用正弦定理解三角形【例1】在中,若,,,则 . 【例2】在ABC中,已知=,=,B=45,求A、C和.【思考】从所得到式子看,为什么会有两解:sinA =,在上显然有两个解。在上的值域为(0,1】,在只有一解。【适时导练】1.(1)ABC中,=8,B=60,C=75,求; (2)ABC中,B=30, =4,c=8,求C、A、a.问题二:利用余弦定理解三角形【例3】设的内角
3、所对的边分别为.已知,.()求的周长;()求的值.【解题思路】本小题主要考查三角函数的基本公式和余弦定理,同时考查基本运算能力【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:【例4】(2010重庆文数) 设的内角A、B、C的对边长分别为、,且3+3-3=4 .() 求sinA的值;()求的值.【适时导练】2 在ABC中,、分别是角A,B,C的对边,且=-.(1)求角B的大小;(2)若=,+=4,求ABC的面积.问题三:正弦定理余弦定理综合应用【例5】(2011山东文数)在ABC中,内角A,B,C的对边分别为,c已知 (I)求的值; (II)若cosB=,ABC 的周长为5,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 余弦 综合 应用 三角形 经典 例题 学生
限制150内