高中概率高考真题总结.docx
《高中概率高考真题总结.docx》由会员分享,可在线阅读,更多相关《高中概率高考真题总结.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全国各地高考及模拟试卷试题分类概率选择题16名同学排成两排,每排3人,其中甲排在前排的概率是 ( B )A BC D 2有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概率是 ( D )A B. C. D. 3甲乙两人独立的解同一道题,甲乙解对的概率分别是,那么至少有1人解对的概率是 ( D )A. B. C. D.4从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的及为偶数的概率是 ( B )A. B. C. D. 5有2n个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之及为偶数的概率是 ( C )A、 B、 C、
2、 D、6有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是 ( C )A BC D7已知P箱中有红球1个,白球9个,Q箱中有白球7个,(P、Q箱中所有的球除颜色外完全相同)现随意从P箱中取出3个球放入Q箱,将Q箱中的球充分搅匀后,再从Q箱中随意取出3个球放入P箱,则红球从P箱移到Q箱,再从Q箱返回P箱中的概率等于 ( B )AB CD8已知集合12,14,16,18,20,11,13,15,17,19,在A中任取一个元素用(1,2,3,4,5)表示,在B中任取一个元素用(1,2,3,4,5)表示,则所取两数满足的概率为( B )A、 B、 C、 D、9在圆
3、周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是( B )A. B. C. D. 10已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C )A.7个 B.8个 C.9个 D.10个11甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A、0.48 B、0.52 C、0.8 D、0.92填空题1纺织厂的一个车间有n(n7,nN)台织布机,编号分别为1,2,3,n,该车间有技术
4、工人n名,编号分别为1,2,3,n现定义记号如下:如果第i名工人操作了第j号织布机,此时规定=1,否则=0若第7号织布机有且仅有一人操作,则 1 ;若,说明了什么: 第三名工人操作了2台织布机 ;2从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为 .(用分数表示)3某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从09这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5个及摇出的号码相同(不计顺序)即可得奖,则中奖的概率是4某中学的一个研究性学习小组共有
5、10名同学,其中男生x名(3x9),现从中选出3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x) _ _解答题1甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率解:(1)P1=0.6(10.7)+(10.6)0.7=0.466分(2)P2=0.6(10.6)(0.7)2(10.7)0=0.235212分2工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求
6、这个小时内:(1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率解:(1)三台机床都能正常工作的概率为P1=0.90.80.85=0.6126分(2)三台机床至少有一台能正常工作的概率是P2=1(10.9)(10.8)(10.85)=0.997 12分3甲、乙两名篮球运动员,投篮的命中率分别为0.7及0.8(1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率;(2)如果每人投篮三次,求甲投进2球且乙投进1球的概率解:设甲投中的事件记为A,乙投中的事件记为B,(1)所求事件的概率为:(A)(B)(AB)=0.70.2+0.30.8+0.70.8=0.946分(2)所求
7、事件的概率为:0.720.3C0.80.22=0042336 12分4沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方通过(绿灯亮通过)的概率分别为,对于在该大街上行驶的汽车,求:(1)在三个地方都不停车的概率;(2)在三个地方都停车的概率;(3)只在一个地方停车的概率1甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率解:(1)P1=0.6(10.7)+(10.6)0.7=0.466分(2)P2=0.6(10.6)(0.7)2
8、(10.7)0=0.235212分2工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求这个小时内:(1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率解:(1)三台机床都能正常工作的概率为P1=0.90.80.85=0.6126分(2)三台机床至少有一台能正常工作的概率是P2=1(10.9)(10.8)(10.85)=0.997 12分3甲、乙两名篮球运动员,投篮的命中率分别为0.7及0.8(1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率;(2)如果每人投篮三次,求甲投进2球且乙投进1
9、球的概率解:设甲投中的事件记为A,乙投中的事件记为B,(1)所求事件的概率为:(A)(B)(AB)=0.70.2+0.30.8+0.70.8=0.946分(2)所求事件的概率为:0.720.3C0.80.22=0042336 12分4沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方通过(绿灯亮通过)的概率分别为,对于在该大街上行驶的汽车,求:(1)在三个地方都不停车的概率;(2)在三个地方都停车的概率;(3)只在一个地方停车的概率解:(1)=4分(2)=8分(3)+= 12分5某种电路开关闭合后,会出现红灯或绿灯闪动已知开关第一次闭合后,出现红灯及出现绿灯的概率都是,
10、从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是,出现绿灯的概率是,若前次出现绿灯,则下一次出现红灯的概率是,出现绿灯的概率是问:(1)第二次闭合后,出现红灯的概率是多少?(2)三次发光中,出现一次红灯,两次绿灯的概率是多少?解:(1)如果第一次出现红灯,则接着又出现红灯的概率是,如果第一次出现绿灯,则接着出现红灯的概率为第二次出现红灯的概率为+= 6分(2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式:出现绿、绿、红的概率为;出现绿、红、绿的概率为;出现红、绿、绿的概率为; 10分所求概率为+= 12分6袋内装有35个球,每个球上都记有从1到35的一个号码,设
11、号码n的球重515克,这些球以等可能性从袋里取出(不受重量、号码的影响)(1)如果任意取出1球,试求其重量大于号码数的概率;(2)如果任意取出2球,试求它们重量相等的概率解:(1)由不等式515n,得n15,或n3由题意,知1,2或16,17,35于是所求概率为6分(2)设第n号及第m号的两个球的重量相等,其中nm,则有515=5m+15, (nm)(15)=0,nm,15, 10分(n,m)=(1,14),(2,13),(7,8)故所求概率为 12分7口袋里装有红色及白色共36个不同的球,且红色球多于白色球从袋子中取出个球,若是同色的概率为 ,求:(1) 袋中红色、白色球各是多少?(2) 从
12、袋中任取个小球,至少有一个红色球的概率为多少?解:(1)令红色球为x个,则依题意得, (3分)所以得15或21,又红色球多于白色球,所以21所以红色球为个,白色球为个 ( 6分)(2)设从袋中任取个小球,至少有一个红色球的事件为A,均为白色球的事件为B,则P(B)=1P(A) (12分)8加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为,且各道工序互不影响(1)求该种零件的合格率(2)从加工好的零件中任取3件,求至少取到2件合格品的概率(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率(用最简分数表示结果)解:(1)该种零件合格率为(2)该种零件的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 概率 高考 总结
限制150内