2012常微分方程试题B及答案.pdf
《2012常微分方程试题B及答案.pdf》由会员分享,可在线阅读,更多相关《2012常微分方程试题B及答案.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页 共 4 页南 京 农 业 大 学 试 题 纸2011-2012学年 第 2 学期课程类型:必修试卷类型:B 课程常微分方程班级学号姓名题号一二三四五六七八九总分签名得分一、填空题(每小题3 分,本题共 30 分)1方程2231)(dsrddsdr是阶方程2.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为_.3若)(),.(),(21txtxtxn为 n 阶齐次线性方程在区间I 上的n 个解,则它们线性无关的充要条件是_.4.方程0),(),(dyyxNdxyxM有只含x的积分因子的充要条件是.5.方程21ddyxy的常数解是6n阶线性
2、齐次微分方程的所有解构成一个维线性空间7.李普希兹条件是保证一阶微分方程初值问题解惟一的条件8.求(,)dyf x ydx满足00)(yx的解等价于求积分方程_的连续解.9.函数()atf te的 Laplace 变换是10.方程212ydxdy经过(0,0)点的解的存在区间是二、计算题(每小题5 分,本题共 20 分)求解下列微分方程:11.xyxy2e3dd本试卷适应范围信息与计算科学装订线装订线第 2 页 共 4 页12.0 xxx130)2()(2dyyxdxyx14.52dyxydxxy三、计算题(每小题10 分,本题共 30 分)15.求下列方程组的通解yxtyyxtx4dddd文
3、档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2
4、Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10
5、I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J
6、4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3
7、L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y
8、10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L
9、1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4第 3 页 共 4 页16.用常数变易法求解一阶非齐次线性微分方程()().dyP x yQ xdx17.讨论方程23dxdy31y在怎样的区域中满足解的存在唯一性定理的条件,并求通过点(0,0)的一切解.四、证明题(每小题10 分,本题共 20 分)18.设),(
10、yxf及yf连续,试证方程0),(dxyxfdy为线性方程的充要条件是它有仅依赖于x的积分因子.文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:C
11、A9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS
12、2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR
13、3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码
14、:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4
15、HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2
16、ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4第 4 页 共 4 页19设(),()p x q x都是区间(,)上的连续函数,且(),()xx是二阶线性方程0)()(yxqyxpy的一个基本解组.试证明:(i)()
17、,()xx都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii)(),()xx没有共同的零点;(iii)(),()xx没有共同的零点.文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8
18、X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3
19、U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA
20、9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2
21、R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3
22、I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:
23、CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4第 5 页 共 4 页常微分方程模拟试题(B)参考答案2012.7一、填空题(每小题3 分,本题共30 分)1二2)(
24、)()(1211xyxyxyC3()0W t或00()=0,W ttI4)(xNxNyM5.1y6.n7.充分8.00(,)xxyyf x y dx9.1,Resasa10.,二、计算题(每小题5 分,本题共20 分)11.解:齐次方程的通解为xCy3e(3 分)令非齐次方程的特解为xxCy3e)(代入原方程,确定出CxCx5e51)(原方程的通解为xCy3e+x2e51(5 分)12.解:对应的特征方程为:012,解得ii23,23212211(3 分)所以方程的通解为:)23sin23cos(2121tctcext(5 分)13.1yM,xN=1,xNyM所以此方程是恰当方程.(3 分)凑
25、微分,0)(22xdyydxydydxx得Cyxyx2331(5 分)145,1,dydtxytdxdx令则1,(7)77dtttdtdxdxt原方程化为:变量分离(3 分)21772txct两边积分217(5)7.2(5)xyxcxy代回变量(5分)文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8Q3L2Y4 HS2R8X5Y10I2 ZR3I3U4L1J4文档编码:CA9V8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 微分方程 试题 答案
限制150内