成人高考~专升本《高等数学二》复习预习教程.doc
《成人高考~专升本《高等数学二》复习预习教程.doc》由会员分享,可在线阅读,更多相关《成人高考~专升本《高等数学二》复习预习教程.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|高等数学二复习教程第一讲 函数、连续与极限一、理论要求1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限 极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续 函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与 Taylor 级数法(8)其他(微积分性
2、质,数列与级数的性质)|1. ( 等价小量与洛必达 )612arctnlim)21ln(arcti 3030 xxx2.已知 2030 )(li(6si xffxx , 求解: 2030 3cosli)il yfxfx 72)0(6)(32163cos1lim2sinlim0 yy xyxxx( 洛必达 )3li2lili 0020xxf3. ( 重要极限 )11)(limx4.已知 a、b 为正常数, xxba30)2(lim求解:令 2ln)ln(l,)2(3xxxtt( 变量替换 )2/300)( )l(3)ll(linlimabt abbaxxxx5. )1ln(02coslixx解:
3、令 )ln(cos)1l(,)(2)1ln(2 xttx( 变量替换 )/00alimli ettxx6.设 连续, ,求 )(f 0)(,)(ff 1)(lim022xxdtf( 洛必达与微积分性质 )7.已知 在 x=0 连续,求 a0,)ln(cos)2xaf解:令 ( 连续性的概念 )/1/)l(im2x|三、补充习题(作业) 1. ( 洛必达 )3cos1lim0xexx2. ( 洛必达或 Taylor))in(li0tgx3. ( 洛必达与微积分性质 )1li20xtxed第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四
4、则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理 理解 Roll、Lagrange 、Cauchy、Taylor 定理会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法基本公式、四则、复合、高阶、隐函数、参数方程求导A.导数微分的计算1. 决定,求52arctn)(eyxy由 dxy2. 决定,求si)l3由 1|0x解:两边微分得 x=0 时 ,将 x=0 代入等式得 y=1yxyco3. 决定,则 xyy2)(由 dxdx)2(ln|0B.曲线切法线问题 4.求对数螺线 处切线的直角坐标方程
5、。/,/ee(),在 (解: 1|),0(|),(sinco2/2/2/ yyxeyx2/5.f(x)为周期为 5 的连续函数,它在 x=1 可导,在 x=0 的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求 f(x)在(6,f(6))处的切线方程。|解:需求 ,等式取 x-0 的极限有: f(1)=0)1(,)6(,ff或 )6(2)1(8)(413limsini10sin xyff tfftxtxC.导数应用问题 6.已知 ,xeffxy 2满 足对 一 切,求 点的性质。)0()0xf若 ),(0y解:令 ,故为极小值点。0,0100 xexfx代 入 ,7.
6、,求单调区间与极值、凹凸区间与拐点、渐进线。23)1(xy解:定义域 ),1(): 斜: 铅 垂 ;拐 点 及驻 点 200 3xyxy8.求函数 的单调性与极值、渐进线。exarctn2/)1(解: ,10arctn2/2 xyx与驻 点)(yxe与渐 : D.幂级数展开问题 9. xdtd022sinsin x nnx nnnnxxxdtdt txtxtxdt txtttx0 2)12(62 4732 1417)12(622 si!)!1)sin(i )!()()!1)()sin( !i或: 20202 sinsi)(sinduxdudxutx|10.求 )0(0)1ln()(2 nfxx
7、f 阶 导 数处 的在 解: )213l 222 nnxo= )(2)1(3543 nnxox2!)1(0)(nfnE.不等式的证明 11.设 ,,x 21)ln(12l)1(l)2 xx,求 证 (证:1)令 0,)(ngg; 得 证 。单 调 下 降 , 单 调 下 降单 调 下 降 ,时 0)()(,0)( )(,1 01l),(, 2xgxgxg2)令 单 调 下 降 , 得 证 。,1,)ln(hhF.中值定理问题 12.设函数 具有三阶连续导数,且 ,1),在xf 1)(,0)(ff,求证:在(-1, 1)上存在一点0(f 3, 使证: 2)(!31)0(!)() xfxfxfx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成人高考 高等数学 复习 预习 教程
限制150内