高数下册复习资料(同济第六版).docx
《高数下册复习资料(同济第六版).docx》由会员分享,可在线阅读,更多相关《高数下册复习资料(同济第六版).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八章 向量及解析几何向量代数定义定义及运算的几何表达在直角坐标系下的表示向量有大小、有方向. 记作或 模向量的模记作和差 单位向量,则方向余弦设及轴的夹角分别为,则方向余弦分别为点乘(数量积), 为向量a及b的夹角叉乘(向量积) 为向量a及b的夹角向量及,都垂直定理及公式垂直平行交角余弦两向量夹角余弦投影向量在非零向量上的投影 平面直线法向量 点方向向量 点方程名称方程形式及特征方程名称方程形式及特征一般式一般式点法式点向式三点式参数式截距式两点式面面垂直线线垂直面面平行线线平行线面垂直线面平行点面距离 面面距离 面面夹角线线夹角线面夹角 空间曲线:切向量切“线”方程:法平“面”方程:切向量
2、切“线”方程:法平“面”方程:空间曲面:法向量切平“面”方程:法“线“方程:或切平“面”方程:法“线“方程:第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。2、 多元函数:,图形:3、 极限:4、 连续:5、 偏导数:6、 方向导数: 其中为的方向角。7、 梯度:,则。8、 全微分:设,则(二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、 闭区域上连续函数的性质(有界性定理,最大最小值定理,介值定理)3、 微分
3、法1) 定义: 2) 复合函数求导:链式法则 若,则 u 3) 隐函数求导:两边求偏导,然后解方程(组) v y(三) 应用1、 极值1) 无条件极值:求函数的极值解方程组 求出所有驻点,对于每一个驻点,令 若,函数有极小值,若,函数有极大值; 若,函数没有极值; 若,不定。2) 条件极值:求函数在条件下的极值令: 函数解方程组 2、 几何应用1) 曲线的切线及法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2) 曲面的切平面及法线曲面,则上一点处的切平面方程为:法线方程为:第十章 重积分重积分积分类型计算方法典型例题二重积分平面薄片的质量质量=面密度面积(1) 利用直角坐标系
4、X型 Y型 P141例1、例3(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 );(2) 被积函数用极坐标变量表示较简单( 含, 为实数 ) P147例5(3)利用积分区域的对称性及被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)P141例2应用该性质更方便计算步骤及注意事项1 画出积分区域2 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数 关于坐标变量易分离3 确定积分次序 原则:积分区域分块少,累次积分好算为妙4 确定积分限 方法:图示法 先积一条线,后扫积分域5 计算要简便 注意:充分利用对称性,奇偶性三重积分空间立体物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 下册 复习资料 同济 第六
限制150内