2016领航《圆与方程》知识点及题型(完整版)).pdf
《2016领航《圆与方程》知识点及题型(完整版)).pdf》由会员分享,可在线阅读,更多相关《2016领航《圆与方程》知识点及题型(完整版)).pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、领航高一数学必修二解析几何初步1 领航 圆与方程的知识点及题型一、圆的方程一圆的标准方程222xaybr,圆心为 a,b,半径为r 1、求标准方程的方法关键是求出圆心,a b和半径r待定系数:往往已知圆上三点坐标利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2、特殊位置的圆的标准方程设法无需记,关键能理解条件方程形式圆心在原点2220 xyrr过原点2222220 xaybabab圆心在x轴上2220 xayrr圆心在y轴上2220 xybrr圆心在x轴上且过原点2220 xayaa圆心在y轴上且过原
2、点2220 xybbb与x轴相切2220 xaybbb与y轴相切2220 xaybaa与两坐标轴都相切2220 xaybaab二圆的一般方程2222040 xyDxEyFDEF1、220AxByCxyDxEyF表示圆方程则222200004040ABABCCDEAFDEFAAA领航高一数学必修二解析几何初步2(1)当0422FED时,方程表示一个圆,其中圆心2,2EDC,半径2422FEDr.(2)当0422FED时,方程表示一个点2,2ED.(3)当0422FED时,方程不表示任何图形.2、求圆的一般方程一般可采用待定系数法或者利用圆的几何性质结合图形分析3、2240DEF常可用来求有关参数
3、的范围三点与圆的关系1、设点到圆心的距离为d,圆半径为r:a、点在圆内dr b、点在圆上d=r c、点在圆外dr 2、给定点),(00yxM及圆222)()(:rbyaxC.M 在圆 C 内22020)()(rbyax M 在圆 C 上22020)()rbyax(M 在圆 C 外22020)()(rbyax对应训练求圆的方程1、过点 A(1,1),B(1,1)且圆心在直线xy2 0 上的圆的方程是2、假设22(1)20 xyxy表示圆,则的取值范围是3、以点)1,2(为圆心且与直线0543yx相切的圆的方程为4、圆心在直线yx 上且与 x 轴相切于点(1,0)的圆的方程为5、以点 C(2,3)
4、为圆心且与y 轴相切的圆的方程是6、求经过A(4,2),B(1,3)两点,且在两坐标轴上的四个截距之和是2 的圆的方程7、求经过点(8,3),并且和直线x6 与 x10 都相切的圆的方程8、点(11),在圆22()()4xaya的内部,则a的取值范围是9、过点1,1A,1,1B且圆心在直线20 xy上的圆的方程10、假设直线34120 xy与两坐标轴交点为A,B,则以线段AB为直径的圆的方程是11、2016 年天津高考已知圆C 的圆心在x 轴的正半轴上,点(0,5)M在圆 C 上,且圆文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9
5、A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H
6、9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4
7、H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M
8、4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3
9、M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW
10、3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:C
11、W3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步3 心到直线20 xy的距离为4 55,则圆 C 的方程为二、直线与圆的位置关系1、直线0CByAx与圆222)()(rbyax圆心到直线的距离22BA
12、CBbAad1无交点直线与圆相离rd;2只有一个交点直线与圆相切rd;3有两个交点直线与圆相交rd;弦长|AB|=222drdrd=rrd还可以利用直线方程与圆的方程联立方程组0022FEyDxyxCByAx求解,通过解的个数来判断:1当0时,直线与圆有2 个交点,直线与圆相交;2当0时,直线与圆只有1 个交点,直线与圆相切;3当0时,直线与圆没有交点,直线与圆相离;2、直线与圆相切1常见题型求过定点的切线方程切线条数点在圆外两条;点在圆上一条;点在圆内无求切线方程的方法及注意点i点在圆外如定点00,P xy,圆:222xaybr,22200 xaybr 第一步:设切线l方程00yyk xx第
13、二步:通过drk,从而得到切线方程特别注意:以上解题步骤仅对k存在有效,当k不存在时,应补上千万不要漏了!例:过点1,1P作圆2246120 xyxy的切线,则切线方程ii点在圆上文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2
14、P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S
15、2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5
16、S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S
17、5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3
18、S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY
19、3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 Z
20、Y3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步4 假设点00 xy,在圆222xyr上,则切线方程为200 x xy yr会在选择题及填空题中运用,但一定要看清题目.假设点00 xy,在圆222xaybr上,则切线方程为200 xaxaybybr碰到一般方程则可先将一般方程标准化,然后运用上述结果。假设点00 xy,在圆2222040 xyDxEyFDEF上,则切线方程为0000022xxyyx xy yDEF由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是判断点与圆的位置关系,得出
21、切线的条数.求切线长:利用基本图形,22222APCPrAPCPr求切点坐标:利用两个关系列出两个方程1ACAPACrkk3、直线与圆相交1求弦长及弦长的应用问题垂径定理及勾股定理常用弦长公式:222121212114lkxxkxxx x暂作了解,无需掌握2判断直线与圆相交的一种特殊方法一种巧合:直线过定点,而定点恰好在圆内.3关于点的个数问题例:1、假设圆22235xyr上有且仅有两个点到直线4320 xy的距离为1,则半径r的取值范围是_.答案:4,62、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有3 个点到直线l的距离都等于1。3、已知圆bxylyx:,422直线,当b
22、为时,圆422yx上恰有1 个点到直线l的距离都等于1。4、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有2 个点到直线l的距离都等于1。5、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有 4 个点到直文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H
23、9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4
24、H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M
25、4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆与方程 2016 领航 方程 知识点 题型 完整版
限制150内