2008数学一真题答案解析.pdf
《2008数学一真题答案解析.pdf》由会员分享,可在线阅读,更多相关《2008数学一真题答案解析.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考研数学一试题分析、详解和评注一、选择题:(本题共 8 小题,每小题4 分,共 32 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数20()ln(2)xf xt dt,则()fx的零点个数为【】(A)0.(B)1.(C)2.(D)3【答案】应选(B).【详解】22()ln(2)22 ln(2)fxxxxx显然()fx在区间(,)上连续,且(1)(1)(2ln3)(2ln3)0ff?,由零点定理,知()fx至少有一个零点又2224()2ln(2)02xfxxx,恒大于零,所以()fx在(,)上是单调递增的又因为(0)0f,根据其单调性可知,()f
2、x至多有一个零点故()fx有且只有一个零点故应选(B).(2)函数(,)arctanxf x yy在点(0,1)处的梯度等于【】(A)i(B)i.(C)j.(D)j.【答案】应选(A).【详解】因为222211fyyxxxyy222221xfxyxyxyy所以(0,1)1fx,(0,1)0fy,于是(0,1)(,)igradf x y.故应选(A).(3)在下列微分方程中,以123cos2sin2xyC eCxCx(123,C CC为任意的常数)为通解的是【】(A)440yyyy.(B)440yyyy.(C)440yyyy.(D)440yyyy.【答案】应选(D).【详解】由123cos2si
3、n 2xyC eCxCx,可知其特征根为11,2,32i,故对应的特征值方程为2(1)(2)(2)(1)(4)ii32443244所以所求微分方程为440yyyy应选(D).(4)设函数()f x在(,)内单调有界,nx为数列,下列命题正确的是【】(A)若nx收敛,则()nf x收敛(B)若nx单调,则()nf x收敛(C)若()nf x收敛,则nx收敛.(D)若()nf x单调,则nx收敛.【答案】应选(B).【详解】若nx单调,则由函数()f x在(,)内单调有界知,若()nf x单调有界,因此若()nf x收敛故应选(B).(5)设A为n阶非零矩阵,E为n阶单位矩阵若30A,则【】则下列
4、结论正确的是:(A)EA不可逆,则EA不可逆.(B)EA不可逆,则EA可逆.(C)EA可逆,则EA可逆.(D)EA可逆,则EA不可逆.【答案】应选(C).【详解】故应选(C).23()()EAEAAEAE,23()()EAEAAEAE故EA,EA均可逆故应选(C).(6)设A为 3 阶实对称矩阵,如果二次曲面方程1xxyz A yz在正交变换下的标准方程的图形如图,则A的正特征值个数为【】(A)0.(B)1.(C)2.(D)3.文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档
5、编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S
6、1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7
7、 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7
8、文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I
9、2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6
10、U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1
11、Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7【答案】应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221xyzac故A的正特征值个数为1故应选(B).(7)设随机变量,X Y独立同分布且X的分布函数为()F x,则max,ZX Y的分布函数为【】(A)2()Fx.(B)()()F x F y.(C)211()F x.(D)1()1()F xF y.【答案】应选(A)【详解】()max,F zP ZzPX Yz2()()()P Xz P YzF z
12、 F zFz故应选(A)(8)设随机变量XN(0,1):,(1,4)YN:,且相关系数1XY,则【】(A)211P YX(B)211P YX(C)211P YX(D)211P YX【答案】应选(D)【详解】用排除法设YaXb由1XY,知X,Y正相关,得0a排除(A)和(C)由(0,1)XN:,(1,4)YN:,得0,1,()EXEYE aXbaEXb10ab,1b从而排除(B).故应选(D)二、填空题:(914 小题,每小题4 分,共 24 分.把答案填在题中横线上.)(9)微分方程0 xyy满足条件(1)1y的解是y.【答案】应填1yx【详解】由dyydxx,得dydxyx两边积分,得ln|
13、ln|yxC文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7
14、F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2
15、R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7
16、F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2
17、R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7
18、F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2
19、R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3代入条件(1)1y,得0C所以1yx(10)曲线sin()ln()xyyxx在点(0,1)的切线方程为.【答案】应填1yx【详解】设(,)sin()ln()F x yxyyxx,则1(,)cos()1xFx yyxyyx,1(,)cos()xFx yxxyyx,(0,1)1xF,(0,1)1yF于是斜率(0,1)1(0,1)xyFkF故所求得切线
20、方程为1yx(11)已 知 幂 级 数0(2)nnnax在0 x处 收 敛,在4x处 发 散,则 幂 级 数0(2)nnnax的收敛域为.【答案】(1,5【详解】由题意,知0(2)nnnax的收敛域为(4,0,则0nnna x的收敛域为(2,2所以0(2)nnnax的收敛域为(1,5(12)设曲面是224zxy的上侧,则2xydydzxdzdxx dxdy.【答案】4【详解】作辅助面1:0z取下侧则由高斯公式,有2xydydzxdzdxx dxdy122xydydzxdzdxx dxdyxydydzxdzdxx dxdy文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J
21、6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4
22、HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J
23、6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4
24、HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J
25、6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2008 数学 一真题 答案 解析
限制150内