2016高考立体几何证明垂直的专题训练.pdf
《2016高考立体几何证明垂直的专题训练.pdf》由会员分享,可在线阅读,更多相关《2016高考立体几何证明垂直的专题训练.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 P E D C B A 高中立体几何证明垂直的专题训练(1)通过“平移”,根据假设/,abba且平面则平面1在四棱锥P-ABCD中,PBC为正三角形,AB 平面 PBC,AB CD,AB=21DC,中点为PDE.求证:AE 平面 PDC.2如图,四棱锥PABCD的底面是正方形,PA 底面 ABCD,PDA=45,点 E为棱 AB的中点求证:平面PCE 平面 PCD;3、如下列图,在四棱锥PABCD中,ABPAD平面,/ABCD,PDAD,E是PB的中点,F是CD上的点,且12DFAB,PH为PAD中AD边上的高。1证明:PHABCD平面;2假设121PHADFC,求三棱锥EBCF的体积;3
2、证明:EFPAB平面.EFBACDP第 2 题图2 4.如 下 列 图,四 棱 锥PABCD底 面 是 直 角 梯 形,2,BAADCDADCDABPA底面ABCD,E为PC的中点,PAAD。证明:BEPDC平面;2利用等腰三角形底边上的中线的性质5、在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC求证:PCAB;求二面角BAPC的大小;6、如图,在三棱锥PABC中,PAB是等边三角形,PAC=PBC=90 o证明:ABPCA C B P 文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4
3、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I
4、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4
5、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I
6、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4
7、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I
8、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4
9、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B53 3利用勾股定理7、如图,四棱锥PABCD的底面是边长为1 的正方形,,1,2.PACD PAPD求证:PA平面ABCD;8、如图 1,在直角梯形ABCD中,CDAB/,ADAB,且121CDADAB现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图21求证:AM平面BEC;2求证:BC平面BDE;_ D_ C_ B_ A_ PMAFBCDEMEDCBAF文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF
10、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P
11、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF
12、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P
13、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF
14、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P
15、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF
16、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B54 CADBOE9、如图,四面体ABCD 中,O、E分别是 BD、BC的中点,2,2.CACBCDBDABAD1求证:AO平面 BCD;2求异面直线AB与 CD所成角的大小;10、如 图,四 棱 锥SABCD中,BCAB,BCCD,侧 面SAB为 等 边 三 角 形,2,1ABBCCDSD证明:SDSAB平面;求AB与平面SBC所成角的大小文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5
17、文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1
18、C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 高考 立体几何 证明 垂直 专题 训练
限制150内