苏教版八年级下册数学含答案.docx
《苏教版八年级下册数学含答案.docx》由会员分享,可在线阅读,更多相关《苏教版八年级下册数学含答案.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、苏教版八年级下册数学题号一二三总分得分一、选择题(本大题共20小题,共60.0分)2x-4在实数范围内有意义,那么x的取值范围是 A.x2B.x2C.x2D.x=245220化成最简二次根式的结果是 A.32B.34C.5253.以下二次根式中,及a是同类二次根式的是 A.3aB.2a2C.a3D.a44.以下各式计算正确的选项是 A.5+2=76-33=23C.8+502=4+253+27=635.6.“赵爽弦图巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如下图的“赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,假
2、设a+b27.如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔60nmile3nmile2nmile3nmile2nmile8.如图,等边OAB的边长为2,那么点B的坐标为 A.1,1B.3,1C.3,3D.1,39.以下几组数中,为勾股数的是 A.3、4、6B.13、14、1510.假设直角三角形的三边长为偶数,那么这三边的边长可能是 A.3,4,5B.6,8,10C.7,24,29D.8,12,2011.满足以下条件的三角形中,不是直角三角形的是 A.三内角的度数之比为1:2:3B.三内角的度数之比为3:4:5 C.三边长之比为3:4:5D.三边长的平方之比为1:2:313.在探索“尺规
3、三等分角这个数学名题的过程中,曾利用了如图该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,ACF=AFC,FAE=FEA假设ACB=21,那么ECD的度数是 A.7B.21C.23D.2414.平行四边形ABCD,AC、BD是它的两条对角线,那么以下条件中,能判断这个平行四边形为矩形的是 A.BAC=DCAB.BAC=DACC.BAC=ABDD.BAC=ADB15.16.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如下图图中OABC为折线,这个容器的形状可以是 A.B.C.D.17.点 A-1,1,B1,1,C2,4在同一个函数图象上,这
4、个函数图象可能是 A.B.C.D.18.下表记录了甲、乙、丙、丁四名射击运发动最近几次选拔赛成绩的平均数和方差: 甲乙丙丁平均数环方差19.“莲城读书月活动完毕后,对八年级三班45人所阅读书籍数量情况的统计结果如下表所示: 阅读数量 1本 2本 3本 3本以上 人数人 10 18 13 420.关于2、6、1、10、6的这组数据,以下说法正确的选项是 二、填空题(本大题共11小题,共33.0分)m-1m根号外的因式移到根号内,结果为 _ (3-a)(a+1)=3-aa+1成立的所有整数a的和是 _ 23.在ABC中BC=2,AB=23,AC=b,且关于x的方程x2-4x+b=0有两个相等的实数
5、根,那么AC边上的中线长为 _ 24.如图,ABC三条边AC=20cm,BC=15cm,AB=25cm,CDAB,那么CD= _ cm25.如图,在矩形ABCD中,AB=2,E是BC的中点,AEBD于点F,那么CF的长是 _ 26.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30得到线段BP,连接AP并延长交CD于点E,连接PC,那么三角形PCE的面积为 _ 27.在平行四边形ABCD中,对角线AC及BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件下面给出了四组条件:ABAD,且AB=AD;AB=BD,且ABBD;OB=OC,且OBOC;AB=AD,且AC=BD其
6、中正确的序号是 _ cm,底边长为xcm,腰长为ycm,那么x及y之间的关系式为 _ y=2x2a+b+a+2b是正比例函数,那么a= _ x1,x2中的最小值为minx1,x2,例如min0,-1=-1,当x取任意实数时,那么min-x2+4,3x的最大值为 _ k= _ 时,函数y=k+3xk2-8-5是关于x的一次函数三、解答题(本大题共9小题,共72.0分)32.计算:-12021-丨1-33tan60丨+(-2)212-2+2021-0 33.:x2+y2-10x+2y+26=0,求x+yx-y的值 tABC中,a为直角边,c为斜边,且满足c-5+210-2c=a-4,求这个三角形的
7、周长和面积 35.ABC的三边为a、b、c,且a+b=7,ab=12,c=5,试判定ABC的形状 36.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE 1求证:AGEBGF; 2试判断四边形AFBE的形状,并说明理由 37.矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点 求证:1四边形AFCE是平行四边形; 2EG=FH 38.如图,矩形ABCD中,ABD、CDB的平分线BE、DF分别交边AD、BC于点E、F 1求证:四边形BEDF是平行四边形; 2当ABE为多少度时,四边形BEDF是菱形?请说明理由 39.如
8、图,在四边形ABCD中,BD为一条对角线,ADBC,AD=2BC,ABD=90,E为AD的中点,连接BE 1求证:四边形BCDE为菱形; 2连接AC,假设AC平分BAD,BC=1,求AC的长 40. 如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2 1假设DG=6,求AE的长; 2假设DG=2,求证:四边形EFGH是正方形 苏教版八年级下册数学答案和解析【答案】-m 22.5 23.2 24.12 25.23-10 27. 28.y=8-12x0x8 29.23 30.3 31.3 32.解:原式=-1-|1-333|
9、+24+1 =-1-0+8+1 =8 33.解:x2+y2-10x+2y+26=0, x-52+y+12=0, x=5,y=-1, x+yx-y=x-y2 =5-12 =4 34.解:c-5+210-2c=a-4, c-5=0, 解得c=5, a-4=0, 解得a=4, 在RtABC中,a为直角边,c为斜边, b=c2-a2=3, 这个三角形的周长是5+4+3=12, 面积是432=6 35.解:a2+b2=a+b2-2ab=25, c2=25, a2+b2=c2, ABC是直角三角形 36.1证明:四边形ABCD是平行四边形, ADBC, AEG=BFG, EF垂直平分AB, AG=BG,
10、在AGEH和BGF中,AEG=BFGAGE=BGFAG=BG, AGEBGFAAS; 2解:四边形AFBE是菱形,理由如下: AGEBGF, AE=BF, ADBC, 四边形AFBE是平行四边形, 又EFAB, 四边形AFBE是菱形 37.解: 1证明:四边形ABCD是矩形, ADBC,AD=BC, E、F分别是AD、BC的中点, AE=12AD,CF=12BC, AE=CF, 四边形AFCE是平行四边形; 2四边形AFCE是平行四边形, CEAF, DGE=AHD=BHF, ABCD, EDG=FBH, 在DEG和BFH中 DGE=BHFEDG=FBHDE=BF, DEGBFHAAS, EG
11、=FH 38.证明:1四边形ABCD是矩形, ABDC、ADBC, ABD=CDB, BE平分ABD、DF平分BDC, EBD=12ABD,FDB=12BDC, EBD=FDB, BEDF, 又ADBC, 四边形BEDF是平行四边形; 2当ABE=30时,四边形BEDF是菱形, BE平分ABD, ABD=2ABE=60,EBD=ABE=30, 四边形ABCD是矩形, A=90, EDB=90-ABD=30, EDB=EBD=30, EB=ED, 又四边形BEDF是平行四边形, 四边形BEDF是菱形 39.1证明:AD=2BC,E为AD的中点, DE=BC, ADBC, 四边形BCDE是平行四边
12、形, ABD=90,AE=DE, BE=DE, 四边形BCDE是菱形 2解:连接AC ADBC,AC平分BAD, BAC=DAC=BCA, AB=BC=1, AD=2BC=2, sinADB=12, ADB=30, DAC=30,ADC=60, 在RtACD中,AD=2, CD=1,AC=3 40.1解:AD=6,AH=2 DH=AD-AH=4 四边形ABCD是矩形 A=D=90 在RtDHG中,HG2=DH2+DG2 在RtAEH中,HE2=AH2+AE2 四边形EFGH是菱形 HG=HE DH2+DG2=AH2+AE2 即42+62=22+AE2 AE=48=43; 2证明:AH=2,DG
13、=2, AH=DG, 四边形EFGH是菱形, HG=HE, 在RtDHG和RtAEH中, HG=EHDG=AH, RtDHGRtAEHHL, DHG=AEH, AEH+AHE=90, DHG+AHE=90, GHE=90, 四边形EFGH是菱形, 四边形EFGH是正方形 【解析】 1. 解:二次根式2x-4在实数范围内有意义, 2x-40, 解得:x2, 那么实数x的取值范围是:x2 应选:B 直接利用二次根式的概念形如aa0的式子叫做二次根式,进而得出答案 此题主要考察了二次根式有意义的条件,正确把握二次根式的定义是解题关键 2. 解:原式=124520=1294=34, 应选:B 根据同底
14、数幂的除法,可得答案 此题考察了最简二次根式,利用二次根式的除法、二次根式的性质是解题关键 3. 解:A、3a及a不是同类二次根式; B、2a2=2a及a不是同类二次根式; C、a3=aa及a是同类二次根式; D、a4=a2及a不是同类二次根式; 应选:C 根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可 此题考察的是同类二次根式的概念,判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否一样 4. 解:A、5+2无法计算,故此选项错误; B、56-33无法计算,故此选项错误; C、8+502=722,故此选项错误; D、33+27=63,
15、正确 应选:D 直接利用二次根式的加减运算法那么化简求出答案 此题主要考察了二次根式的加减运算,正确化简二次根式是解题关键 5. 解:在RtACB中,ACB=90,BC=0.7米,AC=2.4米, AB222=6.25 在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2, BD2+22=6.25, BD2=2.25, BD0, BD=1.5米, CD=BC+BD=0.7+1.5=2.2米 应选C 先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论 此题考察的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理及方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾
16、股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用 6. 解:如下图: a+b2=21, a2+2ab+b2=21, 大正方形的面积为13, 2ab=21-13=8, 小正方形的面积为13-8=5 应选:C 观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用a+b2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案 此题主要考察了勾股定理的应用,熟练应用勾股定理是解题关键 7. 解:如图作PEAB于E 在RtPAE中,PAE=45,PA=60nmile, PE=AE=2260=302nmile, 在RtPBE中,B=30, PB=2PE=602
17、nmile, 应选B 如图作PEAB于E在RTPAE中,求出PE,在RtPBE中,根据PB=2PE即可解决问题 此题考察方向角、直角三角形、锐角三角函数的有关知识解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线 8. 解:如下图,过B作BCAO于C,那么 AOB是等边三角形, OC=12AO=1, RtBOC中,BC=OB2-OC2=3, B1,3, 应选:D 先过B作BCAO于C,那么根据等边三角形的性质,即可得到OC以及BC的长,进而得出点B的坐标 此题主要考察了等边三角形的性质以及勾股定理的运用,解题的关键是作辅助线构造直角三角形 9. 解:A、32+4262,不
18、是勾股数; B、132+142152,不是勾股数; C、72+242=252222,不是勾股数 应选:C 根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数解答即可 此题考察了勾股数的定义,比拟简单 10. 解:A、3,4,5都是奇数,选项错误; B、62+82=102, 三角形是直角三角形; C、7,24,29中7和29是奇数,应选项错误; D、82+122=208,202=400, 82+122202, 三角形不是直角三角形 应选B 判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方 此题考察了勾股定理的逆定理,解答此题要用到勾股数的定义
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版八 年级 下册 数学 答案
限制150内