高中数学总复习资料汇总(必修1-5-).docx
《高中数学总复习资料汇总(必修1-5-).docx》由会员分享,可在线阅读,更多相关《高中数学总复习资料汇总(必修1-5-).docx(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学总复习资料汇总(必修1-5 )高考数学复习必修1第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如1,2,3;描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如有理数
2、,分别表示有理数集和正实数集。定义2 子集:对于两个集合A及B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A及B相等。如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。便于理解:包含两个意思:A及B相等 、A是B的真子集定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。定义6 集合记作开区间,集合记作闭区间,R记作定义7 空集是任何集合的子集,是任何非空集合的真子集。补充知识点 对集合中元素三大性质的理解(1)确定性集合中的元素,必须是确定的对于集合和元素,要么,要么,二
3、者必居其一比如:“所有大于100的数”组成一个集合,集合中的元素是确定的而“较大的整数”就不能构成一个集合,因为它的对象是不确定的再如,“较大的树”、“较高的人”等都不能构成集合(2)互异性对于一个给定的集合,集合中的元素一定是不同的任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素如:由,组成一个集合,则的取值不能是或1(3)无序性集合中的元素的次序无先后之分如:由组成一个集合,也可以写成组成一个集合,它们都表示同一个集合帮你总结:学习集合表示方法时应注意的问题(1)注意及的区别是集合的一个元素,而是含有一个元素的集合,二者的关系是(2)注意及的区别是不含任何元素的集合,而是含有
4、元素的集合(3)在用列举法表示集合时,一定不能犯用实数集或来表示实数集这一类错误,因为这里“大括号”已包含了“所有”的意思用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义例如:集合中的元素是,这个集合表示二元方程的解集,或者理解为曲线上的点组成的点集;集合中的元素是,这个集合表示函数中自变量的取值范围;集合中的元素是,这个集合表示函数中函数值的取值范围;集合中的元素只有一个(方程),它是用列举法表示的单元素集合(4)常见题型方法:当集合中有n个元素时,有2n个子集,有2n-1个真子集,有2n-2个非空真子集。二、基础例题(必会)例1已
5、知,求正解:,解析:这道题要注意研究的元素(看竖线前的元素),均是y,所以要求出两个集合中y的范围再求交集,A中的y范围是求表达式的值域、因此此题是表示两个函数值域的集合例2 若,且,试求实数正解:AB=2,5,由,解得或当a=1时,及元素的互异性矛盾,故舍去;当时,此时,这及矛盾,故又舍去;当时,此时满足题意,故为所求解析:此题紧紧抓住集合的三大性质:确定性 互异性 无序性三、趋近高考(必懂)1.(2010年江苏高考1)设集合A=-1,1,3,B=a+2,a2+4,AB=3,则实数a=_方法:将集合B两个表达式都等于3,且抓住集合三大性质。【答案】1.2.(2010.湖北卷2.)设集合A=,
6、B=,则AB的子集的个数是( ) A. 4 B.3 C.2 D.1方法:注意研究元素,是点的形式存在,A是椭圆,B是指数函数,有数形结合方法,交于两个点,说明集合中有两个元素,还要注意,题目求子集个数,所以是22=4【答案】A集合穿针 转化引线(最新)一、集合及常用逻辑用语3.若,则是的()(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件解析:,即或,即或,由集合关系知:,而是的充分条件,但不是必要条件故选()4.若,则“”是“方程表示双曲线”的()(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件解析:方程表示双曲线或故选(A)二、集合及函数5.已知集合
7、,那么等于()(A)(0,2),(1,1)(B)(0,2),(1,1)(C)1,2 (D)解析:由代表元素可知两集合均为数集,又P集合是函数中的y的取值范围,故P集合的实质是函数的值域而Q集合则为函数的定义域,从而易知,选(D)评注:认识一个集合,首先要看其代表元素,再看该元素的属性,本题易因误看代表元素而错选()或()三、集合及方程6.已知,且,求实数p的取值范围解析:集合A是方程的解集,则由,可得两种情况:,则由,得;方程无正实根,因为,则有于是综上,实数p的取值范围为四、集合及不等式7. 已知集合,若,求实数m的取值范围解析:由不等式恒成立,可得,()(1)当,即时,()式可化为,显然不
8、符合题意(2)当时,欲使()式对任意x均成立,必需满足即解得集合B是不等式的解集,可求得,结合数轴,只要即可,解得五、集合及解析几何例6已知集合和,如果,求实数m的取值范围解析:从代表元素看,这两个集合均为点集,又及是两个曲线方程,故的实质为两个曲线有交点的问题,我们将其译成数学语言即为:“抛物线及线段有公共点,求实数m的取值范围”由,得方程在区间0,2上至少有一个实数解首先,由,得或当m3时,由及知,方程只有负根,不符合要求;当时,由及知,方程有两个互为倒数的正根,故必有一根在区间内,从而方程至少有一个根在区间0,2内综上,所求m的取值范围是第二章、函数一、基础知识(理解去记)定义1 映射,
9、对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素及之对应,则称f: AB为一个映射。定义2 函数,映射f: AB中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若xA, yB,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合f(x)|xA叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为x|x0,xR.定义3 反函数,若函数f: AB(通常记作y=f(x))是一一映射,则它的逆映射f-1: AB叫原函数的反函数,通常写作y=f-1(x). 这里求反函数的过程
10、是:在解析式y=f(x)中反解x得x=f-1(y),然后将x, y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).补充知识点:定理1 互为反函数的两个函数的图象关于直线y=x对称。定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。定义4 函数的性质。(1)单调性:设函数f(x)在区间I上满足对任意的x1, x2I并且x1 x2,总有f(x1)f(x2),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的xD,都有f(-x)=
11、-f(x),则称f(x)是奇函数;若对任意的xD,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。定义5 如果实数ab,则数集x|axb, xR叫做开区间,记作(a,b),集合x|axb,xR记作闭区间a,b,集合x|axb记作半开半闭区间(a,b,集合x|axa记作开区间(a, +),集合x|xa记作半开半闭
12、区间(-,a.定义6 函数的图象,点集(x,y)|y=f(x), xD称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象及其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)及函数y=f(-x)的图象关于y轴对称;(5)及函数y=-f(-x)的图象关于原点成中心对称;(6)及函数y=f-1(x)的图象关于直线y=x对称;(7)及函数y=-f(x)的图象关于x轴对称。定理3 复合函数y=fg(x)的单调性,记住四个字
13、:“同增异减”。例如y=, u=2-x在(-,2)上是减函数,y=在(0,+)上是减函数,所以y=在(-,2)上是增函数。注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。一、基础知识(初中知识 必会)1二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。2二次函数的性质:当a0时,f(x)的图象开口向上,在区间(-,x0上随自变量x增大函数值减小(简称递减),在x0, -)上随自变量增大函数值增大(简称递增)。当a0时,方程f(x)=0即
14、ax2+bx+c=0和不等式ax2+bx+c0及ax2+bx+c0时,方程有两个不等实根,设x1,x2(x1x2),不等式和不等式的解集分别是x|xx2和x|x1xx2,二次函数f(x)图象及x轴有两个不同的交点,f(x)还可写成f(x)=a(x-x1)(x-x2).2)当=0时,方程有两个相等的实根x1=x2=x0=,不等式和不等式的解集分别是x|x和空集,f(x)的图象及x轴有唯一公共点。3)当0时,方程无解,不等式和不等式的解集分别是R和.f(x)图象及x轴无公共点。当a0,当x=x0时,f(x)取最小值f(x0)=,若a0),当x0m, n时,f(x)在m, n上的最小值为f(x0);
15、 当x0n时,f(x)在m, n上的最小值为f(n)(以上结论由二次函数图象即可得出)。定义1 能判断真假的语句叫命题,如“35”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题及逻辑联结词构成的命题由复合命题。一定注意: “p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p及“非p”即“p”恰好一真一假。定义2 原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。一定注意: 原命题及其逆否命题同真假。一个命题的逆命题和否
16、命题同真假。一定注意: 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。定义3 如果命题“若p则q”为真,则记为pq否则记作pq.在命题“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。二、基础例题(必懂)xyx11x1数形结合法。例1(09.江西) 求方程|x-1|=的正根的个数.【解】 分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。例2 (2010.广西模拟) 求函数f(x)=的最大值
17、。【解】 f(x)=,记点P(x, x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。因为|PA|-|PA|AB|=,当且仅当P为AB延长线及抛物线y=x2的交点时等号成立。所以f(x)max=2.函数性质的应用。例3 (10、全国) 设x, yR,且满足,求x+y.【解】 设f(t)=t3+1997t,先证f(t)在(-,+)上递增。事实上,若a0,所以f(t)递增。由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.例4 (10、全国) 奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。【解】
18、因为f(x)是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)f(a2-1)。又f(x)在定义域(-1,1)上递减,所以-11-aa2-11,解得0a1。例5 (10、全国) 设f(x)是定义在(-,+)上以2为周期的函数,对kZ, 用Ik表示区间(2k-1, 2k+1,已知当xI0时,f(x)=x2,求f(x)在Ik上的解析式。【解】 设xIk,则2k-10,则由得n0,设f(t)=t(+1),则f(t)在(0,+)上是增函数。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=)若m0。同理有m+n=0,x=,但及m0矛盾。综上,方程有唯一实数解x=3
19、.配方法。例7 (经典例题) 求函数y=x+的值域。【解】 y=x+=2x+1+2+1-1=(+1)-1-1=-.当x=-时,y取最小值-,所以函数值域是-,+)。4换元法。例8 (经典例题) 求函数y=(+2)(+1),x0,1的值域。【解】令+=u,因为x0,1,所以2u2=2+24,所以u2,所以2,12,所以y=,u2+2,8。所以该函数值域为2+,8。5判别式法。例9 求函数y=的值域。【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0. 当y1时,式是关于x的方程有实根。所以=9(y+1)2-16(y-1)20,解得y1.又当y=1时,存在x=0使解析式成立,所以函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习资料 汇总 必修
限制150内