2019上海高考数学试卷及答案.pdf





《2019上海高考数学试卷及答案.pdf》由会员分享,可在线阅读,更多相关《2019上海高考数学试卷及答案.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精心整理2019 年上海市高考数学试卷2019.06.07 一.填空题(本大题共12 题,满分 54 分,第 16题每题 4 分,第 712题每题 5 分)1.已知集合(,3)A,(2,)B,则AB2.已知zC,且满足1i5z,求z3.已知向量(1,0,2)a,(2,1,0)b,则a与b的夹角为4.已知二项式5(21)x,则展开式中含2x项的系数为5.已知x、y满足002xyxy,求23zxy的最小值为6.已知函数()f x周期为 1,且当01x,2()logf xx,则3()2f7.若,x yR,且123yx,则yx的最大值为8.已知数列na前n项和为nS,且满足2nnSa,则5S9.过曲线
2、24yx的焦点F并垂直于x轴的直线分别与曲线24yx交于A、B,A在B上方,M为抛物线上一点,(2)OMOAOB,则10.某三位数密码,每位数字可在09 这 10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是11.已知数列na满足1nnaa(*nN),若(,)nnP n a(3)n均在双曲线22162xy上,则1lim|nnnP P12.已知2()|1f xax(1x,0a),()f x与x轴交点为A,若对于()f x图像上任意一点P,在其图像上总存在另一点Q(P、Q异于A),满足APAQ,且|APAQ,则a二.选择题(本大题共4 题,每题 5 分,共 20 分)13.已知直线方
3、程20 xyc的一个方向向量d可以是()A.(2,1)B.(2,1)C.(1,2)D.(1,2)14.一个直角三角形的两条直角边长分别为1 和 2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()精心整理A.1B.2C.4D.8 15.已知R,函数2()(6)sin()f xxx,存在常数aR,使得()f xa为偶函数,则的值可能为()A.2B.3C.4D.516.已知tantantan(),有下列两个结论:存在在第一象限,在第三象限;存在在第二象限,在第四象限;则()A.均正确 B.均错误 C.对错 D.错对三.解答题(本大题共5 题,共 14+14+14+16+18=76分)
4、17.如图,在长方体1111ABCDA BC D中,M为1BB上一点,已知2BM,3CD,4AD,15AA.(1)求直线1AC与平面ABCD的夹角;(2)求点 A到平面1A MC的距离.18.已知1()1f xaxx,aR.(1)当1a时,求不等式()1(1)f xf x的解集;(2)若()f x在1,2x时有零点,求a的取值范围.19.如图,ABC为海岸线,AB为线段,BC为四分之一圆弧,39.2BDkm,22BDC,68CBD,58BDA.(1)求BC的长度;(2)若40ABkm,求 D到海岸线ABC的最短距离.(精确到 0.001km)20.已知椭圆22184xy,1F、2F为左、右焦点
5、,直线l过2F交椭圆于 A、B两点.(1)若直线l垂直于 x 轴,求|AB;(2)当190F AB时,A在 x 轴上方时,求 A、B的坐标;(3)若直线1AF交 y 轴于 M,直线1BF交 y 轴于 N,是否存在直线 l,使得11F ABF MNSS,若存在,求出直线l 的方程,若不存在,请说明理由.21.数列na()n*N有 100 项,1aa,对任意2,100n,存在niaad,1,1in,若ka与前 n 项中某一项相等,则称ka具有性质 P.(1)若11a,2d,求4a所有可能的值;(2)若na不是等差数列,求证:数列na中存在某些项具有性质P;(3)若na中恰有三项具有性质P,这三项和
6、为 c,请用 a、d、c 表示12100aaa.文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7
7、X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3
8、 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6
9、T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8
10、文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:C
11、D10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10
12、G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8文档编码:CD10V10G1N1M9 HX9L7X3O6Z3 ZG6M6T9X5A8精心整理参考答案一.填空题1.(2,3)2.5i,155iiz3.2arccos5,22cos5|55a bab4.40
13、,2x的系数为325240C5.6,线性规划作图,后求出边界点代入求最值,当0 x,2y时,min6z6.1,2311()()log1222ff7.98,法一:113222yyxx,239()82 2yx;法二:由132yx,2(32)23yyyyyx(302y),求二次最值max9()8yx8.3116,由1122(2)nnnnSaSan得:112nnaa(2n),na为等比数列,且11a,12q,5511 1()31211612S9.3,依题意求得:(1,2)A,(1,2)B,设M坐标为(,)M x y,有:(,)(1,2)(2)(1,2)(22,4)x y,带入24yx有:164(22)
14、,即310.27100,法一:121103932710100CCCP(分子含义:选相同数字选位置选第三个数字);法二:131010327110100CPP(分子含义:三位数字都相同+三位数字都不同)11.2 33,法一:由22182nan得:22(1)6nna,2(,2(1)6nnP n,21(1)(1,2(1)6nnPn,利用两点间距离公式求解极限:12lim|33nnnP P;法二(极限法):当n时,1nnP P与渐近线平行,1nnP P在x轴投影为 1,渐近线斜角满足:3tan3,112 33cos6nnP P12.2a二.选择题13.选 D,依题意:(2,1)为直线的一个法向量,方向向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 上海 高考 数学试卷 答案

限制150内