2015版高中数学(人教版必修5)配套练习:3.3二元一次不等式组与简单的线性规划问题第3课时.pdf
《2015版高中数学(人教版必修5)配套练习:3.3二元一次不等式组与简单的线性规划问题第3课时.pdf》由会员分享,可在线阅读,更多相关《2015版高中数学(人教版必修5)配套练习:3.3二元一次不等式组与简单的线性规划问题第3课时.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/12 封面2/12 作者:PanHongliang 仅供个人学习第三章 3.3 第 3 课时一、选择题文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文
2、档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8
3、L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A
4、5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M1
5、0文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8
6、Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O
7、6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M103/12 1若变量x、y 满足约束条件y1xy0 xy20,则 zx2y 的最大值为()A4B3 C2D1 答案 B 解读 先作出可行域如图作直线 x2y0
8、在可行域内平移,当x2y z0 在 y 轴上的截距最小时z值最大当移至 A(1,1)时,zmax12(1)3,故选 B2 设变量 x、y 满足约束条件2xy44x y 1x2y2,则目标函数z3xy 的取值范围是()A32,6B32,1 C1,6D6,32 答案 A 解读 本题考查了线性规划的基础知识及数形结合的思想根据约束条件,画出可行域如图,作直线l0:3xy 0,将直线平移至经过点A(2,0)处 z 有最大值,经过点B(12,3)处 z有最小值,即32z6.3设 zxy,式中变量x 和 y 满足条件xy3 0 x2y0,则 z的最小值为()A1B 1 C3D 3 答案 A 解读 作出可行
9、域如图中阴影部分直线 z xy 即 yxz.经过点 A(2,1)时,纵截距最大,z 最小 zmin1.文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编
10、码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9
11、 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5
12、ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文
13、档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8
14、L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A
15、5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M104/12 4变量 x、y 满足下列条件2xy122x9y362x3y24x0y0,则使 z3x2y 最小的(x,y)是()A(4,5)B(3,6)C(9,2)D(
16、6,4)答案 B 解读 检验法:将A、B、C、D 四选项中x、y 代入 z3x2y 按从小到大依次为A、B、D、C然后按 ABDC 次序代入约束条件中,A 不满足 2x 3y24,B 全部满足,故选 B5已知 x、y 满足约束条件2xy4x 2y4x 0,y0,则 zxy 的最大值是()A43B83C2D4 答案 B 解读 画出可行域为如图阴影部分由x2y42xy4,解得 A(43,43),当直线 z xy 经过可行域内点A 时,z最大,且zmax83.6(2014 广东理,3)若变量 x,y 满足约束条件yxxy 1y 1,且 z 2xy 的最大值和最小值分别为m 和 n,则 mn()A5B
17、6 C7D8 答案 B 解读 作出可行域如图,文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA
18、8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编
19、码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9
20、 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5
21、ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文
22、档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8
23、L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M105/12 由yx,y 1,得x 1,y 1,A(1,1);由xy1,y 1.得x2,y 1,B(2,1);由yx,xy1,得x12,y12.C(12,12)作直线 l:y 2x,平移 l 可知,当直线y 2xz,经过点
24、 A 时,z 取最小值,当ymin 3;当经过点B 时,z 取最大值,zmax3,m3,n 3,mn6.二、填空题7已知 x、y 满足约束条件x 0 x y2xy1,则 z3x2y 的最大值为 _答案 5 解读 作出可行域如图,当直线z3x2y 平移到经过点(1,1)时,z 最大zmax5.8已知 x、y 满足y20 x30 xy10,则 x2y2的最大值为 _答案 25 解读 画出不等式组表示的平面区域,如图中的阴影部分所示由图知,A(3,4),B(3,2),C(3,2),则|OA|9165,|OB|9413,|OC|9413.设 P(x,y)是不等式组表示的平面区域内任意一点,文档编码:C
25、X1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK2X8Y1O6A5 ZA8S4V5Z3M10文档编码:CX1D5H8Y8L9 HK
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 高中数学 人教版 必修 配套 练习 3.3 二元 一次 不等式 简单 线性规划 问题 课时
链接地址:https://www.taowenge.com/p-55736681.html
限制150内