(整理)光伏发电实训系统031131.pdf
《(整理)光伏发电实训系统031131.pdf》由会员分享,可在线阅读,更多相关《(整理)光伏发电实训系统031131.pdf(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、宠辱不惊,看庭前花开花落;去留无意,望天上云卷云舒。洪应明勿以恶小而为之,勿以善小而不为。刘备-KNT-SPV01 光伏发电实训系统 实验指导书(2011 年全国职业院校技能大赛指定设备)南京康尼科技实业有限公司 2011 年 3 月 人不知而不愠,不亦君子乎?论语老当益壮,宁移白首之心;穷且益坚,不坠青云之志。唐王勃-第一部分 光伏发电系统基础 1.1 光伏电池 1.1.1 半导体与 PN 结 1本征半导体 纯净半导体是导电能力介于导体和绝缘体之间的一种物质,纯净的半导体称为本征半导体。制造半导体器件的常用半导体材料有硅(Si)、锗(Ge)和砷化镓(GaAs)等。本征硅半导体中的硅原子核最外
2、层有四个价电子,硅晶体为共价键结构,硅原子最外层的价电子被共价键束缚,在低温下,这些共价键是完好的,本征硅半导体显示出绝缘体特性。当温度升高或受到光照等外界激发时,共价键中的某些价电子会获得能量,摆脱共价键束缚,成为可以自由运动的电子,在原来的共价键中留出空穴。这些空穴又会被邻近的共价键中的价电子填补,并在邻近的共价键中产生新的空穴,空穴运动是带负电荷的的价电子运动造成的,其效果是带正电荷的粒子在运动。可以认为,自由电子是带负电荷的载流子,空穴是带正电荷的载流子。因此,本征半导体中有两种载流子即电子和空穴,它们是成对出现的,称为电子-空穴对,两种载流子都可以传导电流。通常本征半导体中的载流子浓
3、度很低,导电能力差。当温度升高或受到光照时,本征半导体中的载流子浓度按指数规律增加,半导体的导电能力也显著增加。2P 型半导体和 N 型半导体 纯净半导体中加入了微量杂质,其导电能力会明显增强。在本征硅半导体中掺入微量三价元素,如硼(B)等,硼原子核的最外层有三个价电子,在形成共价键时,就产生了一个空穴,因此掺入微量三价元素后,本征硅半导体中的空穴浓度大大增加,半导体的导电能力明显提高,主要依靠空穴导电的半导体称为P 型半导体。在 P 型半导体中,空穴浓度高于电子,空穴称为多数载流子,电子称为少数载流子。在本征硅半导体中掺入微量五价元素,如磷(P)等,磷原子核的最外层有五个价电子,在形成共价键
4、时,就产生了一个自由电子,因此掺入微量五价元素后,本征硅半导体中的电子浓度大大增加,半导体的导电能力明显提高,主要依靠电子导电的半导体称为N 型半导体。在N 型半导体中,电子的浓度高于空穴,电子称为多数载流子,空穴称为少数载流子。无论是P 型半导体还是 N 型半人不知而不愠,不亦君子乎?论语吾日三省乎吾身。为人谋而不忠乎?与朋友交而不信乎?传不习乎?论语-导体,整个硅晶体中的正负电荷数量是相等的,是电中性的。3PN 结 采用特殊制造工艺使硅半导体的一边为 P 型半导体,另一边为 N 型半导体。由于在 P 型半导体中的空穴浓度高于电子浓度,而在 N 型半导体中电子浓度高于空穴浓度,因此,在 P
5、型半导体和 N 型半导体的交界面存在空穴和电子的浓度差。多数载流子会从高浓度处向低浓度处运动,这种由浓度差引起的多数载流子运动称为扩散运动,扩散运动的结果是在交界面 P 区一侧失去空穴留下不能移动的负离子,在 N 区一侧失去电子留下不能移动的正离子。这样,在P 型硅半导体和 N型硅半导体交界面的两侧出现了由不能移动的正负离子形成的空间电荷区,称之为 PN 结。空间电荷区中产生了一个从 N 区指向 P 区的电场,该电场由多数载流子扩散而形成,称为内电场。空间电荷区中没有载流子,所以空间电荷区也称为耗尽层。如图1 所示是半导体PN 结的结构示意图。图 1 半导体 PN 结的结构示意图 PN 结中的
6、内电场力会使 P 区的电子即少数载流子向 N 区运动,同时使 N 区的空穴即少数载流子向 P 区运动,少数载流子在内电场力的作用下的运动称为漂移运动。扩散运动和漂移运动的方向是相反的,起初,空间电荷区较小,内电场较弱,扩散运动占优势。随后空间电荷区不断扩大,内电场增强,对多数载流子扩散的阻力不断增大,多数载流子扩散运动逐渐减弱,然而少数载流子的漂移运动不断增强。最后,扩散运动和漂移运动达到动态平衡,空间电荷区的宽度相对稳定,流过 PN 结的扩散电流和漂移电流大小相等、方向相反,总电流保持为零。百学须先立志。朱熹良辰美景奈何天,便赏心乐事谁家院。则为你如花美眷,似水流年。汤显祖-1.1.2 光伏
7、电池的工作原理 光伏电池是半导体 PN 结接受太阳光照产生光生电势效应,将光能变换为电能的变换器。当太阳光照射到具有 PN 结的半导体表面,P 区和 N 区中的价电子受到太阳光子的冲激,获得能量摆脱共价键的束缚产生电子和空穴多数载流子和少数载流子,被太阳光子激发产生的电子和空穴多数载流子在半导体中复合,不呈现导电作用。在 PN 结附近 P 区被太阳光子激发产生的电子少数载流子受漂移作用到达 N 区,同样,PN 结附近 N 区被太阳光子激发产生的空穴少数载流子受漂移作用到达 P 区,少数载流子漂移对外形成与 PN 结电场方向相反的光生电场,一旦接通负载电路便有电能输出。图 2 是光伏电池受光线照
8、射引起光生电势的示意图,是光伏电池表面被反射的光线;是太阳光子进入光伏电池表面,激发产生的电子和空穴在没有到达PN 结时被复合;是太阳光子到达 PN 结附近,激发产生的电子和空穴少数载流子在 PN 结漂移的作用下,产生光生电势;是太阳光子到达光伏电池深处,远离 PN 结,激发产生的电子和空穴在没有到达PN 结时被复合,与情况类似;是被光伏电池吸收,能量较小不能激发电子和空穴的太阳光子;是被光伏电池吸收且透射的光子。图 2 太阳光照射半导体产生电子和空穴的示意图 图2比较清楚地描述了光伏电池的电势是PN结附近由太阳光子激发的电子和空穴少数载流子通过漂移形成的,PN 结附近的电子和空穴少数载流子通
9、过漂移,电子流向 N 区,空穴流向 P 区。从外电路来看,P 区为正、N 区为负,如果接入负载,N 区的电子通过外电路负载流向 P 区形成电子流,进入 P 区后与空穴复合。我们知道,电子流动方向与电流流动方向是相反的,光伏电池接入负载后,电流是从电池的 P 区流出,经过负载流入N 区回到电池。1.2 硅型光伏电池的电特性 其身正,不令而行;其身不正,虽令不从。论语百川东到海,何时复西归?少壮不尽力,老大徒伤悲。汉乐府长歌行-1.2.1 等效电路 硅光伏电池的等效电路如图 3(a)所示。其中,Iph是光伏电池输出的电流,也称为光生电流,Iph值正比光伏电池的面积和入射光的辐照度,1cm2光伏电池
10、的Iph值约为 1625mA/cm2。环境温度升高,Iph值会略增大,温度每升高 1C,Iph值约上升 78A。ID是暗电流,是指光伏电池在无光照下由外电压作用下 PN 结流过的单向电流,无光照下的光伏电池的特性类似普通的二极管的特性。Rs是串联电阻,主要由光伏电池的体电阻、表面电阻、电极导体电阻、电极与硅接触电阻等组成,阻值小于 1。Rsh是旁路电阻,主要由光伏电池表面污浊和半导体晶体缺陷引起的漏电阻,一般为几千欧姆。Rs和 Rsh是光伏电池的固有电阻,相当于光伏电池的内阻,因串联的 Rs值很小、并联的 Rsh值比较大,在进行电路分析和计算时,它们可以忽略不计。因此,硅光伏电池的等效电路相当
11、于一个恒流源 Iph和二极管并联,如图 3(b)所示。硅光伏电池的等效电路还应含有PN 结形成的结电容和其它分布电容,通常光伏电池只有直流分量而没有高频交流分量,因此,这些电容可以忽略不计。(a)(b)图 3 硅型光伏电池的等效电路 硅光伏电池的开路电压 Uoc是将光伏电池置于 100mW/cm2的光照下,光伏电池输出开路即负载 RL时的输出电压值,硅光伏电池的开路电压一般为 500580mV,工作电流约为 2025mA/cm2,硅光伏电池的开路电压与电池面积无关,与入射光辐照度的对数成正比,与环境温度成反比。环境温度每上升 1C,Uoc值约下降 23mV。硅光伏电池单体是光电转换的最小单元,
12、尺寸一般为 4 100cm2不等。由于所能提供的电压和电流很小,一般不作为光伏电源使用。通常将多个光电池进行海纳百川,有容乃大;壁立千仞,无欲则刚。林则徐云路鹏程九万里,雪窗萤火二十年。王实甫-串并联封装,构成太阳能电池组件作为光伏电源的基本单元使用,其功率一般为几瓦至几十瓦。太阳能组件再经过串并联组合安装构成太阳能电池方阵,以满足光伏发电系统负载所要求的输出功率。1.2.2 光伏电池的输出特性 图 4 是光伏电池的输出特性曲线,在光照强度不变的情况下,它的功率输出具有极大值。在这个极大值点的两侧,光伏电池输出都在零与极大值之间变化。图 4 光伏电池的输出特性曲线 1.3 光伏储能及其充放电模
13、式 1.3.1 蓄电池的主要参数指标 蓄电池有以下主要参数指标:(1)蓄电池的电动势。(2)蓄电池的开路电压与工作电压。(3)蓄电池的容量。(4)蓄电池内阻。(5)蓄电池的能量(6)蓄电池功率和比功率 1蓄电池的电动势 蓄电池的电动势在理论上是输出能量多少的量度。一般讲,在相同的条件下,万两黄金容易得,知心一个也难求。曹雪芹志不强者智不达,言不信者行不果。墨翟-电动势高的蓄电池,输出的能量大。理论上讲,蓄电池的电动势等于组成蓄电池的两个电极的平衡电势之差。2 蓄电池的开路电压与工作电压 蓄电池在开路状态下的端电压称为开路电压。蓄电池的开路电压等于其正极电势与负极电势之差,在数值上等于蓄电池的电
14、动势。蓄电池的工作电压是蓄电池承接负载后在放电过程中所显示的电压,也称为负载电压或放电电压。由于蓄电池存在内阻,蓄电池承接负载后的工作电压往往低于开路电压。蓄电池承接负载时是处于放电过程,放电电压在放电过程中表现出来的平稳性表征蓄电池工作电压的精度。蓄电池工作电压的平稳性与蓄电池内部活性物质反应的平稳性有关。蓄电池工作电压随放电时间变化的曲线称为放电曲线,其数值及平稳度依赖于放电条件,在高速率、低温条件下放电时,蓄电池的工作电压将减低,平稳程度也随之下降。3 蓄电池的容量 蓄电池在一定放电条件下所能给出的电量称为蓄电池的容量,常用单位是安培小时,简称安时(Ah),根据不同的计量条件,蓄电池的容
15、量又分为理论容量、额定容量、实际容量和标称容量。(1)理论容量 理论容量是蓄电池中活性物质的质量按法拉第定律计算得到的最高理论值,常用比容量的概念即单位体积或单位质量蓄电池所能给出的理论电量,单位是Ah/kg 或 Ah/L。(2)额定容量 额定容量也称为保证容量,是按国家或有关部门颁布的保证蓄电池在规定的放电条件下应该放出的最低限度的容量。(3)实际容量 实际容量是指蓄电池在一定条件下实际所能够输出的电量,它在数值上等于放电电流与放电时间的乘积,其值小于理论容量。因为蓄电池在放电过程中,其活性物质不能完全被有效利用,蓄电池中不参加反应的导电部件等,也要消耗电能。蓄电池的实际容量与蓄电池的正、负
16、极活性物质的数量与利用的程度有关。活性物质的利用率主要受放电模式和电极结构等因数影响,放电模式是指放电速丹青不知老将至,贫贱于我如浮云。杜甫以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。旧唐书魏征列传-率、放电形式、终止电压和温度;电极结构是指电极高宽比例、厚度、孔隙率和导电栅网的形式。放电速率简称放电率,常用时率和倍率表示,时率是以放电时间表示的放电速率,以某电流值放电至规定终止电压所经历的时间。倍率是指蓄电池放电电流的数值为额定容量数值的倍数。终止电压是指蓄电池放电时电压下降到不宜再继续放电时的最低工作电压。(4)标称容量 标称容量也称公称容量,是用来鉴别蓄电池容量大小
17、的近似安时值,只标明蓄电池的容量范围而不是确切数值。因为在没有指定放电条件下,蓄电池的容量是无法确定的。4 蓄电池内阻 蓄电池放电时,电流回路通过蓄电池内部要受到活性物质、电解质、隔膜、电极接头等多种阻力,使得蓄电池的电压降低,这些阻力总和称为蓄电池的内阻。蓄电池内阻不是常数,在放电过程中随时间不断变化。一般讲,大容量蓄电池内阻小,低倍率放电时,蓄电池内阻较小;在高倍率放电时,蓄电池内阻增大。蓄电池的内阻包括欧姆电阻和极化内阻。欧姆电阻遵守欧姆定律,极化内阻不遵守欧姆定律,它随电流密度增加而增大,呈非线性关系。(1)欧姆电阻 欧姆电阻主要体现在蓄电池内部的导电部件的电阻,如电极材料、电解液、隔
18、膜的电阻,以及各部分零件的接触电阻组成。(2)极化内阻 极化内阻是指在蓄电池正、负极进行电化学反应时极化引起的内阻,它与活性物质的特性、电极结构形式及其制造工艺有关,尤其与蓄电池的运行工作条件有关,如放电电流和温度。当通以大电流时,电化学极化和浓度极化增加,可能引起负极的钝化。低温对极化和离子扩散会产生不利影响,因而在低温条件下蓄电池的内阻增加。(3)隔膜电阻 隔膜材料是绝缘体,隔膜电阻不是指材料本身的电阻,隔膜电阻是指隔膜的孔隙率、孔径和孔的曲折程度对离子迁移产生的阻力,即电流通过隔膜时微孔中人人好公,则天下太平;人人营私,则天下大乱。刘鹗常将有日思无日,莫待无时思有时。增广贤文-的电解液的
19、电阻。隔膜微孔结构中充满电解液,电解液中的离子通过孔隙进行迁移而导电,因此蓄电池的隔膜电阻越小越好。5 蓄电池的能量 蓄电池的能量是指蓄电池在一定的放电条件下,蓄电池所能给出的电能,通常用瓦时(Wh)表示。蓄电池的能量分为理论能量和实际能量。(1)理论能量 蓄电池的理论能量(WT)可用理论容量(CT)与电动势(E)的乘积表示,即 WT=CTE (2)实际能量 蓄电池的实际能量(WR)是指蓄电池在一定的放电条件下的实际容量(CR)与平均工作电压(UR)的乘积,即 WR=CRUR 6 蓄电池功率和比功率(1)蓄电池功率 蓄电池功率是指蓄电池在一定的放电条件下,单位时间内所给出能量的大小,单位是瓦(
20、W)或千瓦(kW)。(2)蓄电池比功率 蓄电池比功率是单位质量蓄电池所能给出的功率,单位是 W/kg或 kW/kg。蓄电池比功率越大,表示可以承受的放电电流越大。7.蓄电池的输出功率 蓄电池的输出功率也称为充电效率。蓄电池充电时把太阳能电池发出的电能转化为化学能储存起来,放电时把化学能转化为电能,输出供给负载。蓄电池在工作过程中有一定的能量消耗,通常用容量输出效率和能量输出效率表示。容量输出效率C是指蓄电池放电时输出的电量与充电时输入的电量之比,即%100chdisCCC 式中,disC为放电时输出的电量,chC为充电时输入的电量。穷则独善其身,达则兼善天下。孟子我尽一杯,与君发三愿:一愿世清
21、平,二愿身强健,三愿临老头,数与君相见。白居易-能量输出效率Q也称电能效率,是指蓄电池放电时输出的能量与充电时输入的电能之比,即%100chsisQQQ 式中,disQ为放电时输出的电能,chQ为充电时输入的电能。影响蓄电池输出效率的主要原因是蓄电池存在内阻,内阻使充电电压增加,放电电压降低,内阻消耗的能量以热的形式释放。1.3.2 蓄电池的基本特性 1 使用寿命 蓄电池的有效寿命期称为使用寿命。蓄电池的使用寿命包括使用期限和使用周期。使用期限指包括存放时间内蓄电池可供使用的时间;使用周期指蓄电池可以重复使用的次数。蓄电池每经受一次全充电和全放电过程称之为一个周期或一个循环,蓄电池的寿命有效期
22、包括所经受的循环寿命。2.蓄电池的自放电 蓄电池的自放电是指蓄电池在存储期间容量逐渐减少的现象。3.蓄电池的运行方式 根据使用要求,同型号的蓄电池可以串联、并联或串并联使用。蓄电池有三种方式运行:循环充放电制、连续浮充制和定期浮充制。(1)循环充放电制 循环充放电制属于全放全充型方式,这种方式使得蓄电池寿命减短。(2)连续浮充制 连续浮充制也称为全浮充制。正常情况下,光伏直流电加在蓄电池电极两端,当蓄电池电压低于光伏直流电,蓄电池被充电;当光伏直流电低或没有电时,启用蓄电池对负载供电。(3)定期浮充制 定期浮充制也称半浮充制,部分时间由光伏直流电直接向负载供电,部分时间由蓄电池供电,同时补充蓄
23、电池放出的容量。蓄电池的连续浮充制和定期浮充制的使用寿命比使用循环充放电制的使用寿命长,连续浮充制比定期浮充制合理。百学须先立志。朱熹老当益壮,宁移白首之心;穷且益坚,不坠青云之志。唐王勃-4.蓄电池的充电 蓄电池的充电方式可以分为:恒流充电、恒压充电、恒压限流和快速充电。(1)恒流充电 恒流充电是以恒定不变的电流进行充电。其不足之处是开始充电阶段恒流值比可充值小,充电后期恒流值比可充值大。恒流充电适合蓄电池串联的蓄电池组。分段恒流充电是恒流充电的变形,在充电后期把充电电流减小。(2)恒压充电 恒压充电是对单体蓄电池以恒定电压充电,充电初期电流很大,随着充电进行,电流减小,充电终止阶段只有很小
24、的电流。其缺点是在充电初期,如果蓄电池放电深度过深,充电电流会很大,会危及充电器的安全,蓄电池也可能因过流而受到损坏。(3)恒压限流 恒压限流是在充电器与蓄电池之间串联一个电阻,当电流大时,电阻上的压降也大,从而减小了充电电压;当电流小时,电阻上的压降也小,充电器输出压降损失就小,这样就自动调整了充电电流。(4)快速充电 快速充电是使电流以脉冲形式输出给蓄电池,蓄电池有一个瞬时间的大电流放电,使其电极去极化,在短时间内充足电。5.蓄电池的充电控制方法 蓄电池的充电过程一般分为主充、均充和浮充。主充一般是快速充电,脉冲式充电是常见的主充模式,以慢充作为主充模式是恒流充电。蓄电池组深度放电或长期浮
25、充后,串联中的单体蓄电池的电压和容量出现不平衡现象,为了消除这种不平衡现象而进行的充电称为均衡充电,简称均充。为了保护蓄电池不过充,在蓄电池充电至 80%-90%容量后,一般转为浮充(恒压充电)模式。1.3 控制器 1.3.1 控制器的基本工作原理 1.控制器的基本工作原理 光伏电池的伏安特性具有很强的非线性,当日照强度改变时,其输出功率与最大功率点会随着变化。因此,良好的控制器能有效地利用太阳能。一寸光阴一寸金,寸金难买寸光阴。增广贤文良辰美景奈何天,便赏心乐事谁家院。则为你如花美眷,似水流年。汤显祖-光伏电池的电能除了提供给直流负载使用之外,还要通过控制器对蓄电池充电。控制器一是要对蓄电池
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理 发电 系统 031131
限制150内