专题4.3 平面向量在解析几何中的应用-2019届高三数学提分精品讲义.doc
《专题4.3 平面向量在解析几何中的应用-2019届高三数学提分精品讲义.doc》由会员分享,可在线阅读,更多相关《专题4.3 平面向量在解析几何中的应用-2019届高三数学提分精品讲义.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题四破体向量征询题三:破体向量在分析几多何中的运用一、考情分析向量存在代数与几多何方法的双重身份,破体向量与分析几多何的交汇是新课程高考命题革新的展开倾向跟肯定趋势,破体向量在分析几多何的运用特不广泛,素日涉及长度、角度、垂直、平行、共线、三点共线等征询题的处理,其目标确实是将几多何征询题坐标化、标志化、数量化,从而将推理转化为运算二、阅历分享向量在分析几多何中的“两个感染(1)载体感染:向量在分析几多何征询题中出现,多用于“包装,处理此类征询题的关键是运用向量的意思、运算脱去“向量外衣,导出曲线上点的坐标之间的关系,从而处理有关距离、歪率、夹角、轨迹、最值等征询题(2)货色感染:运用aba
2、b0(a,b为非零向量),abab(b0),可处理垂直、平行征询题,特不地,向量垂直、平行的坐标表示关于处了分析几多何中的垂直、平行征询题是一种比较轻便的方法三、知识拓展分析几多何与向量综合时可以出现的向量内容:1假设直线l的方程为:AxByC0,那么向量(A,B)与直线l垂直,向量(B,A)与直线l平行2.给出与订交,即是已经清楚过的中点;3.给出,即是已经清楚是的中点;学科!网4.给出,即是已经清楚与的中点三点共线;5.给出以下状况之一:;存在实数;假设存在实数,即是已经清楚三点共线.6.给出,即是已经清楚,即是直角,给出,即是已经清楚是钝角,给出,即是已经清楚是锐角,7.给出,即是已经清
3、楚是的平分线/8在平行四边形中,给出,即是已经清楚是菱形;9.在平行四边形中,给出,即是已经清楚是矩形;10.在中,给出,即是已经清楚是中边的中线;四、题型分析(一)运用向量相当的关系,把几多何征询题代数化两向量相当当且仅当两个向量的长度相当、倾向一样,由于向量坐标的唯一性,故两个向量相当的充要条件是坐标对应相当【例1】【2016届重庆市巴蜀中学高三上学期一诊模拟】椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的歪率为,直线的歪率为,1求椭圆的离心率;2设直线与轴交于点,且称心,当的面积最大年夜时,求椭圆的方程【分析】1设,并分不代入椭圆方程中,然后两式相减,运用直线歪率公式求得,
4、从而求得离心率;2设椭圆的方程为:,直线的方程为:,然后联破椭圆与直线的方程掉掉落关于的二次方程,然后由,及运用韦达定理得出的表达式,从而运用全然不等式求得椭圆的方程2由1知,得,可设椭圆的方程为:,设直线的方程为:,代入椭圆的方程有,来源:Zxxk.Com由于直线与椭圆订交,因此,由韦达定理:,又,因此,代入上述两式有:,因此,当且仅事前,等号成破,现在,代入,有成破,因此所求椭圆的方程为:【点评】运用向量相当法解题,要留心以下两点:1、已经清楚向量起点坐标跟起点坐标,那么向量坐标为起点坐标减去起点坐标;2、向量相当的充要条件【小试牛刀】【贵州省铜仁2018届高三第一次教学质量监测】已经清楚
5、抛物线的中心是,过点的直线与抛物线订交于两点,且点在第一象限,假设,那么直线的歪率是A.1B.C.D.【答案】D【分析】设,由抛物线的方程可知,抛物线的中心,由于,那么,因此,又设过中心的直线的歪率为,因此方程为,联破方程组,得,因此,代入可得,应选D.(二)运用向量垂直的充要条件,奇异化解分析几多何中的垂直征询题两个非零向量垂直的充要条件是,如,那么【例2】设F1,F2分不是椭圆y21的左、右中心,P是第一象限内该椭圆上的一点,且PF1PF2,那么点P的横坐标为()学科!网A1B.C2D.【分析】由已经清楚条件,F1,F2坐标可求,设,运用列方程,得关于的方程,又点P在椭圆y21上,那么,联
6、破求【点评】分析几多何中的垂直屡屡运用直线歪率关系处理,但运用歪率要考虑歪率是否存在,偶尔需要讨论,假设把垂直征询题,转化为数量积为零可以避开谁人征询题,但是要留心以下两点:1、充分开掘题中垂直的条件;2、要善于寻寻向量坐标【小试牛刀】【2017届广西武鸣县高中高三月考】已经清楚椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称1假设点的坐标为,求的值;2假设椭圆上存在点,使得以线段为直径的圆过原点,求的取值范围【答案】1;2【分析】1依题意,是线段的中点,由于A1,0,P,因此点M的坐标为由点M在椭圆上,因此,解得m=2解:设那么,且以线段为直径的圆过原点那么,OPOM,即,因此=来
7、源:Zxxk.Com因此或:导数法(三)运用向量平行的充要条件,敏锐转换分析几多何中的平行或共线征询题与非零向量平行的充要条件是存在唯一实数,使得,假设,那么来源:学科网ZXXK【例3】如图,已经清楚椭圆C:的左、右中心为,其上顶点为.已经清楚是边长为的正三角形.1求椭圆C的方程;2过点任作一动直线交椭圆C于两点,在线段上取一点使得,试揣摸当直线运动时,点是否在某肯定直线上运动?假设在央求出该定直线,假设不在请说明因由.【分析】由已经清楚条件得三点共线,三点共线,由,故可设,其中两点是直线与椭圆的交点,因此设,考虑根与系数关系,设,带入向量式,运用向量相当的充要条件,得其坐标间的关系并结合消参
8、技艺得,故点R在定直线上【分析】1是边长为的正三角形,那么,故椭圆C的方程为.(2)直线MN的歪率必存在,设其直线方程为,并设.联破方程,消去得,那么,由题意可设,由得,故.设点R的坐标为,那么由得,解得.又,从而,故点R在定直线上.【点评】运用向量共线可以将分析几多何中的三点共线或者平行征询题代数化,运用向量相当的充要条件是联系的桥梁,同时要留心设而不求技艺的表达【小试牛刀】设椭圆的左右中心分不为、,是椭圆上的一点,坐标原点到直线的距离为1求椭圆的方程;2设是椭圆上的一点,连接QN的直线交轴于点,假设,求直线的歪率【分析】1由题设知由于,那么有,因此点的坐标为故所在直线方程为因此坐标原点到直
9、线的距离为又,因此解得:所求椭圆的方程为2由题意可知直线的歪率存在,设直线歪率为直线的方程为,那么有设,由于、N、三点共线,且按照题意得,解得或又在椭圆上,故或解得,综上,直线的歪率为或(四)运用向量夹角,公正处了分析几多何中的角度征询题两个非零向量夹角范围为,由数量积定义可以推出,事前,夹角为锐角;事前,夹角为钝角,因此当打扫跟的状况,的范围与三角形内角范围不合,运用向量夹角可以敏锐处了分析几多何中的角的征询题【例4】【河北省唐山市2018届高三上学期期末】已经清楚为抛物线:的中心,过点作两条互相垂直的直线,直线交于差异的两点,直线交于差异的两点,记直线的歪率为.学!科网(1)求的取值范围;
10、(2)设线段的中点分不为点,求证:为钝角.【答案】1k|k0或k22看法析【分析】1由题意可设直线m的方程为yk(x2),将其代入抛物线方程后可掉掉落一二次方程,按照判不式大年夜于零可得k0,或k2同理设直线n的方程为yt(x2),可得t0,或t2按照以kt1,可解得k0或k0,从而可得所求范围2由1可得点M(2k,2k22k),N(2t,2t22t),按照F(0,1)可掉掉落的坐标,通过证明且不共线可得为钝角【分析】1由题可知k0,设直线m的方程为yk(x2),由消去y拾掇得x24kx8k0,由于直线直线m交于差异的两点,因此16k232k0,解得k0,或k2设直线n的方程为yt(x2),由
11、消去y拾掇得x24tx8t0,同因由0可得t0,或t2由于mn,因此kt1,得,或,解得k0或k0故k的取值范围为k|k0或k24kt(2k22k1)(2t22t1),将kt1代入上式可得,2k22t26(kt)32(kt)26(kt)72(kt)20由于2k(2t22t1)2t(2k22k1)2(k)0,因此与不共线因此可得MFN为钝角【点评】分析几多何中处理与角度有关的征询题的方法1不共线三点A,B,CABAC(以BC为直径的圆过点A或|AB|2|AC|2|BC|2等)转化为,然后运用数量积求解;BAC为钝角(点A在以BC为直径的圆内、|AB|2|AC|2|BC|2),可转化为,然后运用数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题4.3 平面向量在解析几何中的应用-2019届高三数学提分精品讲义 专题 4.3 平面 向量 解析几何 中的 应用 2019 届高三 数学 精品 讲义
限制150内