高中新课程数学(新课标人教A版)选修2-1《第三章 空间向量与立体几何》训练题组B.doc
《高中新课程数学(新课标人教A版)选修2-1《第三章 空间向量与立体几何》训练题组B.doc》由会员分享,可在线阅读,更多相关《高中新课程数学(新课标人教A版)选修2-1《第三章 空间向量与立体几何》训练题组B.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量与立体几何解答题精选(选修2-1)1已知四棱锥的底面为直角梯形,底面,且,是的中点。()证明:面面;()求与所成的角;()求面与面所成二面角的大小。证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.()证明:因由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面面.()解:因()解:在上取一点,则存在使要使为所求二面角的平面角.2如图,在四棱锥中,底面是正方形,侧面是正三角形,平面底面 ()证明:平面; ()求面与面所成的二面角的大小证明:以为坐标原点,建立如图所示的坐标图系. ()证明:不防设作,则, , 由得,又,因而与平面内两条相交直线,都垂直. 平
2、面. ()解:设为中点,则,由因此,是所求二面角的平面角,解得所求二面角的大小为3如图,在四棱锥中,底面为矩形,侧棱底面, 为的中点. ()求直线与所成角的余弦值;()在侧面内找一点,使面,并求出点到和的距离.解:()建立如图所示的空间直角坐标系,则的坐标为、,从而设的夹角为,则与所成角的余弦值为. ()由于点在侧面内,故可设点坐标为,则,由面可得, 即点的坐标为,从而点到和的距离分别为.4如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中. ()求的长; ()求点到平面的距离.解:(I)建立如图所示的空间直角坐标系,则,设.为平行四边形,(II)设为平面的法向量,的夹角为,则到平面
3、的距离为5如图,在长方体,中,点在棱上移动.(1)证明:; (2)当为的中点时,求点到面的距离; (3)等于何值时,二面角的大小为.解:以为坐标原点,直线分别为轴,建立空间直角坐标系,设,则(1)(2)因为为的中点,则,从而,设平面的法向量为,则也即,得,从而,所以点到平面的距离为(3)设平面的法向量,由 令,依题意(不合,舍去), .时,二面角的大小为.6如图,在三棱柱中,侧面,为棱上异于的一点,已知,求: ()异面直线与的距离; ()二面角的平面角的正切值.解:(I)以为原点,、分别为轴建立空间直角坐标系.由于,在三棱柱中有,设又侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为.(II)由已知有故二面角的平面角的大小为向量的夹角.7如图,在四棱锥中,底面为矩形,底面,是上一点,. 已知求()异面直线与的距离; ()二面角的大小.解:()以为原点,、分别为轴建立空间直角坐标系.由已知可得设 由,即 由,又,故是异面直线与的公垂线,易得,故异面直线,的距离为.()作,可设.由得即作于,设,则由,又由在上得因故的平面角的大小为向量的夹角.故 即二面角的大小为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 空间向量与立体几何 高中新课程数学新课标人教A版选修2-1第三章 空间向量与立体几何训练题组B 高中 新课程 数学 新课 标人教 选修 第三 空间 向量 立体几何 训练
限制150内