高中高二数学下册知识点总结,期末习题大全.docx
《高中高二数学下册知识点总结,期末习题大全.docx》由会员分享,可在线阅读,更多相关《高中高二数学下册知识点总结,期末习题大全.docx(80页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中高二数学下册复习教学知识点归纳总结期末测试试题习题大全 1.万能公式令tan(a/2)=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2)2.辅助角公式asint+bcost=(a2+b2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)4.积化和差sina*cosb=sin(a+b)+sin(a-b)/2cosa
2、*sinb=sin(a+b)-sin(a-b)/2cosa*cosb=cos(a+b)+cos(a-b)/2sina*sinb=-cos(a+b)-cos(a-b)/25.积化和差sina+sinb=2sin(a+b)/2cos(a-b)/2sina-sinb=2sin(a-b)/2cos(a+b)/2cosa+cosb=2cos(a+b)/2cos(a-b)/2cosa-cosb=-2sin(a+b)/2sin(a-b)/2向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x
3、2,y2)那么向量P1P2=x2-x1,y2-y1|向量P1P2|=根号(x2-x1)平方+(y2-y1)平方4.向量a=x1,x2向量b=x2,y2向量a*向量b=|向量a|*|向量b|*Cos=x1x2+y1y2Cos=向量a*向量b/|向量a|*|向量b|(x1x2+y1y2)=根号(x1平方+y1平方)*根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a=x,y,z)6.充要条件:如果向量a向量b那么向量a*向量b=0如果向量a/向量b那么向量a*向量b=|向量a|*|向量b|或者x1/x2=y1/y27.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a*向量b
4、=(向量a向量b)平方高二数学公式之抛物线1抛物线的定义摘定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。2抛物线的方程对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。3抛物线的几何性质以标准方程y2=2px为例(1)范围:x0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出;(3)顶点:
5、O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0):(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有|AB|=x1+x2+p以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:ax2+b
6、x+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。(9)抛物线y2=2px的切线:如果点P(x0,y0)在抛物线上,则y0y=p(x+x0);(10)参数方程理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法会根据给出的参数,依据条件建立参数方程1.万能公式令tan(a/2)=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2)2.辅助角公式asint+bcost=(a2+b
7、2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)4.积化和差sina*cosb=sin(a+b)+sin(a-b)/2cosa*sinb=sin(a+b)-sin(a-b)/2cosa*cosb=cos(a+b)+cos(a-b)/2sina*sinb=-cos(a+b)-cos(a-b)/25.积化和差sina+sinb=2sin(a+b)/2cos(a-
8、b)/2sina-sinb=2sin(a-b)/2cos(a+b)/2cosa+cosb=2cos(a+b)/2cos(a-b)/2cosa-cosb=-2sin(a+b)/2sin(a-b)/2先给这些吧!毕竟三角函数变换最复杂.这是我自己总结的,好累呀!(当年自己都证过)抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上ca0时开口向上a0(一)椭圆周长计算公式椭圆周长公式:L=2b+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2b)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。(二)椭圆面积计算公式椭圆面积公式:S=ab椭圆面积定理:椭圆的面积
9、等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B
10、)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tan
11、A+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA2-1)cos4A=1+(-8*cosA2+8*cosA4)tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4)五倍角公式:sin5A=16sinA5-20sinA3+5sinAcos5A=16cosA5-20cosA3+5cosAtan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2)cos6A=(-1+2
12、*cosA2)*(16*cosA4-16*cosA2+1)tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA2-15*tanA4+tanA6)七倍角公式:sin7A=-(sinA*(56*sinA2-112*sinA4-7+64*sinA6)cos7A=(cosA*(56*cosA2-112*cosA4+64*cosA6-7)tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2
13、+8*sinA4+1)cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2)tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8)九倍角公式:sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3)cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3)tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)
14、/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4)cos10A=(-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1)tan10A=-2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10)万能公式:sin
15、=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)半角公式sin(A/2)=(1-cosA)/2)sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2)cos(A/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA)tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA)ctg(A/2)=-(1+cosA)/(1-cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB
16、=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+
17、(2n-1)=n22+4+6+8+10+12+14+(2n)=n(n+1)12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=(n(n+1)/2)21*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a
18、+b|a|+|b|a-b|a|+|b|a|b-bab|a-b|a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac0注:方程有一个实根b2-4ac0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c*h正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 数学 下册 知识点 总结 期末 习题 大全
限制150内