高中数学特征方程法求递推数列的通项公式复习.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学特征方程法求递推数列的通项公式复习.doc》由会员分享,可在线阅读,更多相关《高中数学特征方程法求递推数列的通项公式复习.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、特征方程法求递推数列的通项公式一、(一阶线性递推式)设已知数列的项满足,其中求这个数列的通项公式。采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法特征方程法:针对问题中的递推关系式作出一个方程称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为,则当时,为常数列,即,其中是以为公比的等比数列,即.证明:因为由特征方程得作换元则来源:高&考%资(源#网 wxcKS5U.COM当时,数列是以为公比的等比数列,故当时,为0数列,故(证毕)下面列举两例,说明定理1的应用.
2、例1已知数列满足:求解:作方程当时,数列是以为公比的等比数列.于是例2已知数列满足递推关系:其中为虚数单位。当取何值时,数列是常数数列?解:作方程则要使为常数,即则必须二、(二阶线性递推式)定理2:对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。来源:高&考%资(源#网 wxc例3:已知数列满足,求数列的通项公式。解法一(待定系数迭加法)由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,来源:K。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 特征 方程 法求递推 数列 公式 复习
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内