高考一轮复习:第3讲 导数的应用(二.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考一轮复习:第3讲 导数的应用(二.doc》由会员分享,可在线阅读,更多相关《高考一轮复习:第3讲 导数的应用(二.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲导数的应用(二)【2015年高考会这样考】1利用导数求函数的极值2利用导数求函数闭区间上的最值3利用导数解决某些实际问题【复习指导】本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决复习中要注意等价转化、分类讨论等数学思想的应用.基础梳理1函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值(2)求可导函数极值的步骤求f(x);求方程f(x)0的根;检查f(x)在
2、方程f(x)0的根左右值的符号如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点2函数的最值(1)在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值(2)若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值(3)设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤如下:求f(x)在(a,b)内的极值;将f(x)的各极值与f(a),f(b)比较,
3、其中最大的一个是最大值,最小的一个是最小值3利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式yf(x);(2)求函数的导数f(x),解方程f(x)0;(3)比较函数在区间端点和f(x)0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答两个注意(1)注意实际问题中函数定义域的确定(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注
4、意函数最值是个“整体”概念,而极值是个“局部”概念(2)f(x0)0是yf(x)在xx0取极值的既不充分也不必要条件如y|x|在x0处取得极小值,但在x0处不可导;f(x)x3,f(0)0,但x0不是f(x)x3的极值点(3)若yf(x)可导,则f(x0)0是f(x)在xx0处取极值的必要条件双基自测1(2011福建)若a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值等于()A2 B3 C6 D9解析f(x)12x22ax2b,由函数f(x)在x1处有极值,可知函数f(x)在x1处的导数值为零,122a2b0,所以ab6,由题意知a,b都是正实数,所以ab229,当
5、且仅当ab3时取到等号答案D2已知函数f(x)x4x32x2,则f(x)()A有极大值,无极小值 B有极大值,有极小值C有极小值,无极大值 D无极小值,无极大值解析f(x)x34x24xx(x2)2f(x),f(x)随x变化情况如下x(,0)0(0,2)2(2,)f(x)00f(x)0因此有极小值无极大值答案C3(2010山东)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为()A13万件 B11万件 C9万件 D7万件解析yx281,令y0解得x9(9舍去)当0x9时,y0;当x9时,y0,则当x9时,y取
6、得最大值,故选C.答案C4(2011广东)函数f(x)x33x21在x_处取得极小值解析f(x)3x26x3x(x2)当x0时,f(x)0,当0x2时,f(x)0,当x2时,f(x)0,故当x2时取得极小值答案25若函数f(x)在x1处取极值,则a_.解析f(x)在x1处取极值,f(1)0,又f(x),f(1)0,即21(11)(1a)0,故a3.答案3考向一函数的极值与导数【例1】(2011重庆)设f(x)2x3ax2bx1的导数为f(x),若函数yf(x)的图象关于直线x对称,且f(1)0.(1)求实数a,b的值;(2)求函数f(x)的极值审题视点 由条件x为yf(x)图象的对称轴及f(1
7、)0求得a,b的值,再由f(x)的符号求其极值解(1)因f(x)2x3ax2bx1,故f(x)6x22axb.从而f(x)62b,即yf(x)的图象关于直线x对称,从而由题设条件知,解得a3.又由于f(1)0,即62ab0,解得b12.(2)由(1)知f(x)2x33x212x1,f(x)6x26x126(x1)(x2)令f(x)0,即6(x1)(x2)0,解得x12,x21.当x(,2)时,f(x)0,故f(x)在(,2)上为增函数;当x(2,1)时,f(x)0,故f(x)在(2,1)上为减函数;当x(1,)时,f(x)0,故f(x)在(1,)上为增函数从而函数f(x)在x12处取得极大值f
8、(2)21,在x21处取得极小值f(1)6. 运用导数求可导函数yf(x)的极值的步骤:(1)先求函数的定义域,再求函数yf(x)的导数f(x);(2)求方程f(x)0的根;(3)检查f(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值【训练1】 (2011安徽)设f(x),其中a为正实数(1)当a时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围解对f(x)求导得f(x)ex.(1)当a时,若f(x)0,则4x28x30,解得x1,x2.综合,可知xf(x)00f(x)极大值极小值所以,x1是极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考一轮复习:第3讲 导数的应用二 高考 一轮 复习 导数 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内