《等比数列前n项和的教学设计.doc》由会员分享,可在线阅读,更多相关《等比数列前n项和的教学设计.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等比数列前n项和的教学设计内容分析本节课选自普通高中课程标准数学教科书数学(5)(人教A版)第二章第5节第一课时,从在教材中的地位与作用来看:等比数列前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推倒过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。学情分析从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推倒与等差数列前n项和公式的推倒有着本质的不同,这对学生的思维是一个突破,另外,对于q
2、=1这一特殊情况,学生往往容易忽视,尤其是在后面使用公式的过程中容易出错。教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。设计思路新课程改革纲要提出:要“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力”.对这一目标本人认为应更加注重培养学生作为学习主体的能动性、独立性、创造性、发展性。心理学家研究发现,922岁的学生正处于创新思维的培养期,高中生
3、正好处于这一关键年龄段,作为数学教师应因势利导,培养学生的创新思维能力,利用问题探究式的方法对新课加以巩固理解。在生生、师生交流的过程中,体现对弱势学生更多的关心。三维目标理解并掌握等比数列前n项和公式的推倒过程、公式的特点,在此基础上能初步应用公式解决与之有关的的问题。通过对公式推倒方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。通过对公式推倒方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。教学重点:公式的推倒、公式的特点、公式的应用。教学难点:公式的推倒方法和公
4、式的灵活运用。公式推倒所使用的“错位相减法”是高中数学的数列求和方法中最常用的方法之一,它蕴涵了重要的数学思想,所以既是重点也是难点。教学手段:多媒体辅助教学教学过程学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,设计了如下的教学过程:一、创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的2倍,直至第64格,国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么
5、呢?设计意图:设计这个情景目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数,带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时对他们的这种思路给予肯定。在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙的抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的
6、障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。二、师生互动,探究问题在肯定了他们的思路后,接着问:是什么数列?有何特征?应归结为什么数学问题呢?学情预设探讨1:设,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推倒关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在
7、这儿做文章,从而抓住学生的辩证思维能力的良好契机。经过比较、研究,学生发现:两式有许多相同的项,把两式相减,相同的项就消去了,得到。老师提出:这就是错位相减法,并要求学生纵观全过程,反思:为什么式两边要同乘以2呢?经过繁难的计算后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。三、 类比联想,解决问题这时在顺势引导学生将结论一般化,设等比数列,首项为,公比为q,如何求前n项和?这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。设计意图在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学
8、生自己探究公式,从而体验到学习的愉快和成就感。学情预设在学生推倒完成后,再问:由得对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)再次追问:结合等比数列的通项公式,如何把用、q表示出来?(引导学生得出公式的另一种形式)设计意图通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。四、 讨论交流,延伸拓展在此基础上
9、,提出:探究等比数列前n项和公式,还有其他方法吗?我们知道,那么我们能否利用这个关系而求出呢?根据等比数列的定义又有,能否联想到等比定理从而求出呢?设计意图以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围。以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用。五、 变式训练,深化认识例1求等比数列的前8项和。变式1等比数列的前多少项的和是?变式2等比数列,求第5项到第10项的和。变式3等比数列,求前2n项中所有偶数项的和。首先,学生独立思考,自主解题,再请学
10、生上台来幻灯演示他们的解答,其他同学进行评价,然后师生共同进行总结。设计意图采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成,通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。六、 例题讲解,形成技能例2求和设计意图解题时,以学生分析为主,教师适时给予点播,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。七、 总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推倒方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。设计意图以此培养学生的口头表达能力,
11、归纳概括能力。八、 故事结束,首尾呼应最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一跳宽10米、厚8米的大道,大约是全世界一年产量的459倍,显然国王兑现不了他的承诺。设计意图把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。九、课后作业,分层练习必做:课本本节练习1:(1)(2); 2;选做:思考题:(1)求和。(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?设计意图出选做题的目的是注意分层教学和因材施教,让学有余力的学生思考的空间。教学反思对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推倒方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,采用“问题探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。等比数列前n项和的教学设计济宁市任城区第二中学 褚 坤 2011-10-12
限制150内