最新学案4用样本估计总体与变量间的相关关系PPT课件.ppt
《最新学案4用样本估计总体与变量间的相关关系PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新学案4用样本估计总体与变量间的相关关系PPT课件.ppt(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学案学案4 4用样本估计总体与变量间用样本估计总体与变量间的相关关系的相关关系1.1.用用样本样本估计估计总体总体(1)(1)了解分布的意义和作用了解分布的意义和作用,能根据频率分布表画频率分布直能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点方图、频率折线图、茎叶图,体会它们各自的特点.(2).(2)理解理解样本数据标准差的意义和作用样本数据标准差的意义和作用,会计算数据标准差(不要求记会计算数据标准差(不要求记忆公式)忆公式).(3).(3)能从样本数据中提取基本的数字特征能从样本数据中提取基本的数字特征(如平均数、如平均数、标准差),并给出合理的解释标准差),并给
2、出合理的解释.(4).(4)会用样本的频率分布估计会用样本的频率分布估计总体分布总体分布,会用样本的基本数字特征估计总体的基本数字特征会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想理解用样本估计总体的思想.(5).(5)会用随机抽样的基本方法和会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题样本估计总体的思想解决一些简单的实际问题.2.2.变变量的量的相关相关性性(1)(1)会作两个有关联变量的数据的散点图会作两个有关联变量的数据的散点图,并利用散点图认识并利用散点图认识变量间的相关关系变量间的相关关系.(2).(2)了解最小二乘法的思想了解最小二乘法的
3、思想,能根据给出的能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆)数公式不要求记忆).考点考点考点考点11绘制频率分布直方图绘制频率分布直方图绘制频率分布直方图绘制频率分布直方图 某市某市2011年年4月月1日日4月月30日对空气污染指数的监日对空气污染指数的监测数据如下测数据如下(主要污染物为可吸入颗粒物主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,
4、45.(1)完成频率分布表完成频率分布表;(2)作出频率分布直方图作出频率分布直方图;(3)根据国家标准根据国家标准,污染指数在污染指数在050之间时之间时,空气质量为优空气质量为优;在在51100之间时之间时,为良为良;在在101150之间时之间时,为轻微污染为轻微污染;在在151200之间时之间时,为轻度污染为轻度污染.请你依据所给数据和上述标准请你依据所给数据和上述标准,对该市的空气质量给出一对该市的空气质量给出一个简短评价个简短评价.分组分组频数频数频率频率41,51)41,51)2 251,61)51,61)1 161,71)61,71)4 471,81)71,81)6 681,91
5、)81,91)101091,101)91,101)5 5101,111)101,111)(1)频率分布表频率分布表:(2)频率分布直方图如图所示频率分布直方图如图所示.(3)答对下述两条中的一条即可答对下述两条中的一条即可:该市一个月中空气污染指数有该市一个月中空气污染指数有2天处于优的水平天处于优的水平,占当占当月天数的月天数的;有有26天处于良的水平天处于良的水平,占当月天数的占当月天数的;处于优或良的天数为处于优或良的天数为28,占当月天数的占当月天数的.说明该市空说明该市空气质量基本良好气质量基本良好.轻微污染有轻微污染有2天天,占当月天数的占当月天数的;污染指数在污染指数在80以以上
6、的接近轻微污染的天数上的接近轻微污染的天数15,加上处于轻微污染的天数加上处于轻微污染的天数17,占当月天数的,超过占当月天数的,超过50%;说明该市空气质量有说明该市空气质量有待进一步改善待进一步改善.【评析】【评析】【评析】【评析】(1)列频率分布表时要注意区分频数、频率的意义列频率分布表时要注意区分频数、频率的意义.(2)画频率分布直方图时要注意纵、横坐标代表的意义及单画频率分布直方图时要注意纵、横坐标代表的意义及单位位.(3)通过本题可以掌握总体分布估计的各种常见步骤和方法通过本题可以掌握总体分布估计的各种常见步骤和方法.(4)解决总体分布估计问题的一般步骤如下解决总体分布估计问题的一
7、般步骤如下:先确定分组的组数先确定分组的组数;分别计算各组的频数及频率分别计算各组的频数及频率(频率频率=);画出频率分布直方图画出频率分布直方图,并作出相应的估计并作出相应的估计.频数频数总数总数对某电子元件进行寿命追踪调查对某电子元件进行寿命追踪调查,情况如下情况如下:寿命寿命(h)100,200)200,300)300,400)400,500)500,600)个数个数(个个)2030804030(1)列出频率分布表列出频率分布表;(2)画出频率分布直方图画出频率分布直方图;(3)估计电子元件寿命在估计电子元件寿命在100,400)以内的概率以内的概率;(4)估计电子元件寿命在估计电子元件
8、寿命在400h以上的概率以上的概率.【解析】【解析】(1)样本频率分布表如下样本频率分布表如下:(2)频率分布直方图如图频率分布直方图如图分分 组组频频 数数频频 率率1 10.0.)0.00.0.)0.0.,)0.0.,5,5)0.0.5 5,6,6)0.0.合合 计计(3)由频率分布表可以看出由频率分布表可以看出,寿命在寿命在100,400)内的电子内的电子元件出现的频率为元件出现的频率为0.65,所以我们估计电子元件寿命在所以我们估计电子元件寿命在100,400)内的概率为内的概率为0.65.(4)由频率分布表可知由频率分布表可知,寿命在寿命在400h以上的电子元件出现以上的电子元件出现
9、的频率为的频率为0.20+0.15=0.35,故我们估计电子元件寿命在故我们估计电子元件寿命在400h以上的概率为以上的概率为0.35.考点考点考点考点22频率分布直方图的应用频率分布直方图的应用频率分布直方图的应用频率分布直方图的应用为了解学生身高情况,某校以为了解学生身高情况,某校以10%的比例对全校的比例对全校700名名学生按性别进行分层抽样调查,测得身高情况的统计图学生按性别进行分层抽样调查,测得身高情况的统计图如图:如图:(1)估计该校男生的人数;估计该校男生的人数;(2)估计该校学生身高在估计该校学生身高在170185cm之间的概率;之间的概率;(3)从样本中身高在从样本中身高在1
10、80190cm之间的男生中任选之间的男生中任选2人,人,求至少有求至少有1人身高在人身高在185190cm之间的概率之间的概率.【分析】【分析】在频率直方图中在频率直方图中,频率等于矩形的面积频率等于矩形的面积,每一小每一小组的频率等于这小组的频数与样本容量的商组的频率等于这小组的频数与样本容量的商.【解析】【解析】(1)样本中男生人数为)样本中男生人数为40,由分层抽样比例为,由分层抽样比例为10%估计全校男生人数为估计全校男生人数为400.(2)由统计图知)由统计图知,样本中身高在样本中身高在170185cm之间的学生之间的学生有有14+13+4+3+1=35(人人),样本容量为样本容量为
11、70,所以样本中学生身所以样本中学生身高在高在170185cm之间的频率之间的频率f=0.5.故由故由f估计该校学估计该校学生身高在生身高在170185cm之间的概率之间的概率p=0.5.(3)样本中身高在)样本中身高在180185cm之间的男生有之间的男生有4人,设其人,设其编号为编号为,样本中身高在,样本中身高在185190cm之间的男之间的男生有生有2人,设其编号为人,设其编号为.从上述从上述6人中任选人中任选2人的树状图为:人的树状图为:故从样本中身高在故从样本中身高在180190cm之间的男生中任选之间的男生中任选2人的所有可能结果数为人的所有可能结果数为15,至少有,至少有1人身高
12、在人身高在185190cm之间的可能结果数为之间的可能结果数为9.因此,所求概率因此,所求概率p2=.评析评析评析评析解决该类问题时应正确理解图表中各个量的意义解决该类问题时应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键识图掌握信息是解决该类问题的关键.频率分布指的是一频率分布指的是一个样本数据在各个小范围内所占比例的大小个样本数据在各个小范围内所占比例的大小,一般用频率一般用频率分布直方图反映样本的频率分布分布直方图反映样本的频率分布.其中其中,频率分频率分布直方布直方图中纵轴表示图中纵轴表示,频率频率=;频率分布直方图频率分布直方图中中,各小长方形的面积之和为各小长方形的面
13、积之和为1,因此在频率分布直方图因此在频率分布直方图中中,组距是一个固定值组距是一个固定值,所以长方形高的比也就是频率之比所以长方形高的比也就是频率之比;频率分布表和频率分布直方频率分布表和频率分布直方图是一组数据频率分布的图是一组数据频率分布的两种形式两种形式,前者准确前者准确,后者直观后者直观;众数为最高矩形的中点众数为最高矩形的中点;中位数为平分频率分布直方图面积且垂直于横轴的直中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标线与横轴交点的横坐标.频率频率组距组距频数频数样本容量样本容量根据中华人民共和国道路交通安全法规定:车辆驾驶根据中华人民共和国道路交通安全法规定:
14、车辆驾驶员血液酒精浓度在员血液酒精浓度在2080mg/100mL(不含(不含80)之间,属之间,属于酒后驾车;血液酒精浓度在于酒后驾车;血液酒精浓度在80mg/100mL(含(含80)以)以上时,属醉酒驾车上时,属醉酒驾车.据法制晚报据法制晚报报道,近两周全国查处酒后驾车和报道,近两周全国查处酒后驾车和醉酒驾车共醉酒驾车共28800人,如图是对这人,如图是对这28800人血液中酒精含量进行检测人血液中酒精含量进行检测所得结果的频率分布直方图,则属所得结果的频率分布直方图,则属于醉酒驾车的人数约为于醉酒驾车的人数约为()A.2160人人B.2880人人C.4320人人D.8640人人C(依题意血
15、液酒精浓度超过依题意血液酒精浓度超过80mg/100mL的频率为的频率为0.00510+0.0110=0.15,因此属于醉酒驾车的人数为因此属于醉酒驾车的人数为288000.15=4320(人(人).故应选故应选C.)甲、乙两台机床同时加工直径为甲、乙两台机床同时加工直径为10mm的零件,为了检的零件,为了检验产品的质量验产品的质量,从产品中各随机抽取从产品中各随机抽取6件进行测量件进行测量,测得测得数据如下数据如下(单位单位:mm)甲甲:99,100,98,100,100,103乙乙:99,100,102,99,100,100(1)分别计算上述两组数据的平均数和方差分别计算上述两组数据的平均
16、数和方差;(2)根据根据(1)的计算结果的计算结果,说明哪一台机床加工的这种零件说明哪一台机床加工的这种零件更符合要求更符合要求.考点考点考点考点用样本的数字特征估计总体的数字特征用样本的数字特征估计总体的数字特征用样本的数字特征估计总体的数字特征用样本的数字特征估计总体的数字特征【解析】【解析】【解析】【解析】(1)x甲甲=100,x乙乙=100,=(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2=.=(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100
17、-100)2=1.(2)因为因为,说明甲机床加工零件波动比较大说明甲机床加工零件波动比较大,因因此乙机床加工零件更符合要求此乙机床加工零件更符合要求.【分析】【分析】【分析】【分析】已知一组数据已知一组数据x1,x2,xn,其平均数为其平均数为x,方差方差为为s2=,标准差为标准差为.【分析】【分析】【分析】【分析】已知一组数据已知一组数据x1,x2,xn,其平均数为其平均数为x,方差方差为为s2=,标准差为标准差为.【评析】【评析】【评析】【评析】两个机床加工零件的平均数相等两个机床加工零件的平均数相等,平均数描述平均数描述了数据的平均水平了数据的平均水平,要说明哪一台机床加工的零件更符要说
18、明哪一台机床加工的零件更符合要求合要求,可再用方差来判断可再用方差来判断.平均数和标准差超过了规定平均数和标准差超过了规定界限时界限时,说明这批产品质量与生产要求有较大偏差说明这批产品质量与生产要求有较大偏差.甲、乙两种冬小麦试验品种连续甲、乙两种冬小麦试验品种连续x年的平均单位面积产年的平均单位面积产量如下:量如下:试根据这组数据试根据这组数据,估计哪一种小麦品种产量较稳定估计哪一种小麦品种产量较稳定.品种品种第第1 1年年第第2 2年年第第3 3年年第第4 4年年第第5 5年年甲甲9.89.89.99.910.110.1101010.210.2乙乙9.49.410.310.310.810.
19、89.79.79.89.8甲品种的样本平均数为甲品种的样本平均数为10,样本方差为,样本方差为(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)25=0.02;乙品种的样本平均数也是乙品种的样本平均数也是10,样本方差为,样本方差为(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)25=0.240.02.所以,由这组数据可以认为甲种小麦的产量比乙种小麦所以,由这组数据可以认为甲种小麦的产量比乙种小麦的产量较稳定的产量较稳定.某化肥厂甲、乙两个车间包装肥料,在自动包装传送某化肥厂甲、乙两个车间包装肥
20、料,在自动包装传送带上每隔带上每隔30min抽取一包产品,称其重量,分别记录抽抽取一包产品,称其重量,分别记录抽查数据如下:查数据如下:甲:甲:102,101,99,98,103,98,99;乙:乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示将这两组数据用茎叶图表示:(3)将两组数据比较将两组数据比较,说明哪个车间产品较稳定说明哪个车间产品较稳定.考点考点考点考点茎叶图茎叶图茎叶图茎叶图【解析】【解析】【解析】【解析】(1)因为间隔时间相同因为间隔时间相同,故是系统抽样故是系统抽样.(2)茎叶图如图所示茎叶图
21、如图所示:【分析】【分析】【分析】【分析】(1)根据各种抽样的特点判断根据各种抽样的特点判断.(2)求出两组数据的平均值与方差进行比较求出两组数据的平均值与方差进行比较.(3)甲车间甲车间:平均值平均值:x1=(102+101+99+98+103+98+99)=100.方差方差:=(102-100)2+(101-100)2+(99-100)23.4286.乙车间乙车间:平均值平均值:x2=(110+115+90+85+75+115+110)=100,方差方差:=(110-100)2+(115-100)2+(110-100)2228.5714.x1=x2,甲车间产品稳定甲车间产品稳定.【评析】【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 样本 估计 总体 变量 相关 关系 PPT 课件
限制150内