数理方程课件.ppt
《数理方程课件.ppt》由会员分享,可在线阅读,更多相关《数理方程课件.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数理方程课件数理方程课件n二阶线性常系数齐次微分方程的一般形式为二阶线性常系数齐次微分方程的一般形式为y”+p y+q y=0特征方程:特征方程:r2+p r+q=0特征根:特征根:r1 和和 r2.当当nr1 r2 都是实根时,其通解为都是实根时,其通解为 y(x)=A exp(r1x)+B exp(r2x)nr1、r2是两个相等的实根时,其通解为是两个相等的实根时,其通解为 y(x)=A exp(r x)+B x exp(r x)nr1,2=i是一对共轭复根时是一对共轭复根时,其通解为其通解为 y(x)=exp(x)(A cosx+Bsinx)预预备备知知识识傅立叶级数傅立叶级数傅立叶展开
2、定理:周期为傅立叶展开定理:周期为22的函数的函数f(x)f(x)可以展开为三角级数,展开式系数为可以展开为三角级数,展开式系数为狄利克雷收敛定理:狄利克雷收敛定理:若函数在一个周期内连续或只有有限个第若函数在一个周期内连续或只有有限个第一类间断点且在一个周期内至多只有有限一类间断点且在一个周期内至多只有有限个极值点,则当个极值点,则当x x是连续点时,级数收敛是连续点时,级数收敛于该点的函数值;当于该点的函数值;当x x是间断点时,级数是间断点时,级数收敛于该点左右极限的平均值收敛于该点左右极限的平均值。预预备备知知识识傅立叶级数推广若函数若函数f(t)f(t)的周期为的周期为T=2LT=2
3、L,则傅里,则傅里叶展开式为叶展开式为 1.1.有界弦的自由振动有界弦的自由振动 例1.研究两端固定均匀的自由振动.定解问题为:特点:方程齐次,边界齐次.设 且 不恒为零,代入方程和边界条件中得 由 不恒为零,有:取参数 .利用边界条件则 特征值问题 参数称为特征值.分三种情形讨论特征值问题的求解函数X(x)称为特征函数由边值条件(i)方程通解为 (ii)时,通解 由边值条件得:C C1 1=C C 2 2=0=0 从而 ,无意义.无意义 由边值条件:从而 即:(iii)时,通解 故而得再求解T:其解为 所以 两端两端固定固定弦本弦本的征的征振动振动叠加.代入初始条件得:将 展开为Fourie
4、r级数,比较系数得 定解问题的解是Fourier正弦级数,这是在 x0 0 和 x=l 处的第一类齐次边界条件决定的。则无穷级数解为如下混合问题的解上,且 定理定理:若在区间解:令 ,得 化简:引入参数 得 例2:研究两端自由棒的自由纵振动问题.第二类边界条件第二类边界条件得C1=C 2=0 从而 ,无意义 分离变量:(i)时,由边值条件(ii)时,(iii)时,则 而 由边值条件由边值条件从而本征值 本征函数 T 的方程其解为 所以 故代入初始条件:将 展开为傅立叶余弦级数,比较系数得 解为傅立叶余弦级数,由端点处的二类齐次边界条件决定.2.2.有限长杆的热传导问题有限长杆的热传导问题 对于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数理 方程 课件
限制150内