数据挖掘神经网络BP算法优秀PPT.ppt
《数据挖掘神经网络BP算法优秀PPT.ppt》由会员分享,可在线阅读,更多相关《数据挖掘神经网络BP算法优秀PPT.ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、7.3 神经网络算法7.3.1 神经网络的基本原理 人工神经网络是在探讨生物神经系统的启发下发展起来的一种信息处理方法。它模拟生物神经系统结构,由大量处理单元组成非线性自适应动态系统,具有高度非线性的超大规模实践特性,网络的全局作用、大规模并行分布处理及高度的鲁棒性和容错性,有联想记忆、抽象概括和自适应实力,这种抽象概括和自适应实力一般称之为自学实力。工程上用的人工神经元模型如图所示:7.3.2 反向传播模型1.工作原理神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。误差反向传播(Back propagation,简称BP网络),又称为多层前馈神经网络。其模型结构如图
2、7.3所示 2.学习过程 BP网络学习过程是一种误差边向后传播边修正权系数的过程,BP算法把网络的学习过程分为正向传播和反向传播两种交替过程。(1)正向传播 输入信息先传到隐藏层的结点上,经过各单元的特性为S型的激活函数运算后,把隐藏层结点的输出信息传到输出结点,最终给出输出结果。(2)反向传播 假如得不到实际的输出,则转入反向传播过程,将误差信号沿原来的连接线路返回,通过修改各层神经元的权值,逐次地向输入层传播进行计算,再经过正向传播过程。这两个过程的反复运用,渐渐使得误差信号最小,网络学习过程就结束。3BP算法BP算法如下。其中,l为学习率;oi为单元i的输出;oj为单元j的输出;Tj为输
3、出层单元j的期望输出;Errj为与隐藏层单元j的误差加权和;wjk为单元j与单元k相连的有向加权边的权重;为变更单元j活性的偏量。输入:训练样本S,学习率l,多层前馈网络。输出:一个训练的、对样本分类的神经网络。方法:(1)初始化网络的权和阈值(2)WHILE终止条件满足(3)FOR S中的每个训练样本X(4)FOR隐藏或输出层每个单元j(5);/相对于前一层计算单元j的净输入(6);/计算每个单元j的输出(7)FOR输出层每个单元(8);/计算误差(9)FOR由最终一个到第一个隐藏层,对于隐藏层每个单元j(10);/计算关于下一个较高层k的误差(11)FOR网络中的每一个权(12);(13)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 神经网络 BP 算法 优秀 PPT
限制150内