反函数和复合函数的求导法则.doc
《反函数和复合函数的求导法则.doc》由会员分享,可在线阅读,更多相关《反函数和复合函数的求导法则.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二、反函数的导数法则定理1:设为的反函数,若在的某邻域内连续,严格单调,且,则在(即点有导数),且。证明: 所以 。注1:,因为在点附近连续,严格单调; 2:若视为任意,并用代替,使得或,其中均为整体记号,各代表不同的意义; 3:和的“”均表示求导,但意义不同; 4:定理1即说:反函数的导数等于直接函数导数的倒数; 5:注意区别反函数的导数与商的导数公式。【例1】 求的导数,解:由于,是的反函数,由定理1得:。注1:同理可证:; 2:。【例2】 求的导数。解:利用指数函数的导数,自己做。三、初等函数的求导公式1、 常数和基本初等函数的求导公式:(1) (2)(3) (4)(5) (6)(7)
2、(8)(9) (10)(11) (12)(13) (14)(15) (16)(17) (18)(19)(20)(21)(22)四、复合函数的求导法则复合函数的求导问题是最最常见的问题,对一复合函数往往有这二个问题:1.是否可导?2.即使可导,导数如何求?复合函数的求导公式解决的就是这个问题。定理2(复合函数求导法则):如果在点可导,且在 点也可导,那么,以为外函数,以为内函数,所复合的复合函数在点可导,且,或证明: = 所以。注 1:若视为任意,并用代替,便得导函数: ,或 或。 2:与不同,前者是对变量求导,后者是对变量求导,注意区别。 3:注意区别复合函数的求导与函数乘积的求导。 4:复合
3、函数求导可推广到有限个函数复合的复合函数上去,如: 等。【例3】 求的导数。解:可看成与复合而成, 。【例4】 求(为常数)的导数。解:是,复合而成的。所以。这就验证了前面2、1的例4。由此可见,初等函数的求导数必须熟悉(i)基本初等函数的求导;(ii)复合函数的分解;(iii)复合函数的求导公式;只有这样才能做到准确。在解题时,若对复合函数的分解非常熟悉,可不必写出中间变量,而直接写出结果。【例5】,求。解:。【例6】,求。解: 。【例7】,求。解: = =。【例8】,求。解: 。【例9】 , 即。同理,。【例10】,求。解: 。同理: 。 小结: 1 、函数的四则运算的求导法则:设,则(i) (ii) (iii) (iv) 2、复合函数的求导法则:设的导数为: 或 或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反函数 复合 函数 求导 法则
限制150内