高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc
《高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc》由会员分享,可在线阅读,更多相关《高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时 几类不同增长的函数模型导入新课思路1情景导入国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.思路2直接导入我们知道,对数函数y=logax(a1),指数函数y=ax
2、(a1)与幂函数y=xn(n0)在区间(0,+)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.推进新课新知探究提出问题在区间(0,+)上判断y=log2x,y=2x,y=x2的单调性.列表并在同一坐标系中画出三个函数的图象.结合函数的图象找出其交点坐标.请在图象上分别标出使不等式log2x2xx2和log2xx22x成立的自变量x的取值范围.由以上问题你能得出怎样结论?讨论结果:在区间(0,+)上函数y=log2x,y=2x,y=x2均为单调增函数.见下表与图3-2-1-12.x0.20.61.01.41.82.22.63.03.4y=2x1.
3、1491.51622.6393.4824.9596.063810.556y=x20.040.3611.963.244.846.67911.56y=log2x-2.322-0.73700.4850.8481.1381.3791.5851.766图3-2-1-12从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16).不等式log2x2xx2和log2xx22x成立的自变量x的取值范围分别是(2,4)和(0,2)(4,+).我们在更大的范围内列表作函数图象(图3-2-1-13),x012345678y
4、=2x1248163264128256y=x201491625364964图3-2-1-13容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2xx2,有时x21)和幂函数y=xn(n0),通过探索可以发现,在区间(0,+)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当xx0时,就会有axxn.同样地,对于对数函数y=logax(a1)和幂函数y=xn(n0),在区间(0,+)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x
5、轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当xx0时,就会有logax1),指数函数y=ax(a1)与幂函数y=xn(n0)在区间(0,+)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a1)的增长速度越来越快,会超过并远远大于y=xn(n0)的增长速度,而y=logax(a1)的增长速度则会越来越慢.因此,总会存在一个x0,当xx0时,就会有logaxxn0)增长快于对数函数y=logax(a1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思
6、路1例1某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:设摊主每天从报社买进x份,显然当x250,400时,每月所获利润才能最大.而每月所获利润=卖报收入的总价付给报社的总价.卖报收入的总价包含三部分:可卖出400份的20天里,收入为200.30x;可
7、卖出250份的10天里,收入为100.30250;10天里多进的报刊退回给报社的收入为100.05(x-250).付给报社的总价为300.20x.解:设摊主每天从报社买进x份,显然当x250,400时,每月所获利润才能最大.于是每月所获利润y为y=200.30x+100.30250+100.05(x-250)-300.20x=0.5x+625,x250,400.因函数y在250,400上为增函数,故当x=400时,y有最大值825元.例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关
8、系式;(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?图3-2-1-15解:(1)依题意,得y=(2)设第二次服药时在第一次服药后t1小时,则t1+=4,t1=4.因而第二次服药应在11:00;设第三次服药在第一次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有t2+(t2-4)+=4,解得t2=9小时,故第三次服药应在16:00;设第四次服药在第一次后t3小时(t310),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,(t2-4)+(t2-9)+=4,解得t3
9、=13.5小时,故第四次服药应在20:30.变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力f(x)的值愈大,表示接受的能力愈强,x表示提出和讲授概念的时间(单位:分),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:(1)当0x10时,f(x)=-0.1x2+2.6x+43=-0.1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 21 几类不同增长的函数模型 第2课时示范教案 新人教A版必修 21 不同 增长 函数 模型 课时 示范 教案 新人 必修
限制150内