多元函数求极值(拉格朗日乘数法).docx
《多元函数求极值(拉格朗日乘数法).docx》由会员分享,可在线阅读,更多相关《多元函数求极值(拉格朗日乘数法).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。教学重点:多元函数极值的求法。教学难点:利用拉格朗日乘数法求条件极值。教学内容:一、 多元函数的极值及最大值、最小值定义 设函数在点的某个邻域内有定义,对于该邻域内异于的点,如果都适合不等式,则称函数在点有极大值。如果都适合不等式 ,则称函数在点有极小值极大值、极小值统称为极值。使函数取得极值的点称为极值点。例1 函数在点(0,0)处有极小值。因为对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)
2、处的函数值为零。从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面的顶点。例 函数在点(0,0)处有极大值。因为在点(0,0)处函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于平面下方的锥面的顶点。例函数在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数在点具有偏导数,且在点处有极值,则它在该点的偏导数必然为零: 证 不妨设在点处有极大值。依极大值的定义,在点的某邻域内异于的点都适合不等式 特殊地,在
3、该邻域内取,而的点,也应适合不等式 这表明一元函数在处取得极大值,因此必有 类似地可证 从几何上看,这时如果曲面在点处有切平面,则切平面成为平行于坐标面的平面。 仿照一元函数,凡是能使同时成立的点称为函数的驻点,从定理1可知,具有偏导数的函数的极值点必定是驻点。但是函数的驻点不一定是极值点,例如,点(0,0)是函数的驻点,但是函数在该点并无极值。 怎样判定一个驻点是否是极值点呢 ?下面的定理回答了这个问题。定理2(充分条件) 设函数在点的某邻域内连续且有一阶及二阶连续偏导数,又,令则在处是否取得极值的条件如下:(1)时具有极值,且当时有极大值,当时有极小值;(2)时没有极值;(3)时可能有极值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 极值 拉格朗日 乘数
限制150内