复变函数与积分变换复习重点.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《复变函数与积分变换复习重点.pdf》由会员分享,可在线阅读,更多相关《复变函数与积分变换复习重点.pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀资料复变函数复习重点(一)复数的概念1.复数的概念:zxiy,,x y是实数,Re,Imxzyz.21i.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zxy;2)幅角:在0z时,矢量与x轴正向的夹角,记为Arg z(多值函数);主值arg z是位于(,中的幅角。3)arg z与arctanyx之间的关系如下:当0,xargarctanyzx;当0,argarctan0,0,argarctanyyzxxyyzx;4)三角表示:cossinzzi,其中arg z;注:中间一定是“+”号。5)指数表示:izz e,其中arg z。(二)复数的运算1.加减
2、法:若111222,zxiyzxiy,则121212zzxxi yy2.乘除法:1)若111222,zxiyzxiy,则1212122112z zx xy yi x yx y;112211112121221222222222222222xiyxiyzxiyx xy yy xy xizxiyxiyxiyxyxy。2)若121122,iizz ezz e,则名师精编优秀资料121212iz zz z e;121122izzezz3.乘幂与方根1)若(cossin)izziz e,则(cossin)nnninzzninz e。2)若(cossin)izziz e,则122cossin(0,1,21)
3、nnkkzziknnn(有n个相异的值)(三)复变函数1复变函数:wfz,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射.2复初等函数1)指数函数:cossinzxeeyiy,在z平面处处可导,处处解析;且zzee。注:ze是以2 i为周期的周期函数。(注意与实函数不同)3)对数函数:ln(arg2)Lnzzizk(0,1,2)k(多值函数);主值:lnlnargzziz。(单值函数)Lnz的每一个主值分支ln z在除去原点及负实轴的z平面内处处解析,且1lnzz;注:负复数也有对数存在。(与实函数不同)3)乘幂与幂函数:(0)bbLnaaea;(0)bbLnzzez注:
4、在除去原点及负实轴的z平面内处处解析,且1bbzbz。4)三角函数:sincossin,cos,t,22cossinizizizizeeeezzzzgzctgzizzsin,coszz在z平面内解析,且sincos,cossinzzzz注:有界性sin1,cos1zz不再成立;(与实函数不同)文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C
5、7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG
6、4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B
7、8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编
8、码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A
9、10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L
10、8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA
11、6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4名师精编优秀资料4)双曲函数,22zzzzeeeeshzchz;shz奇 函 数,c h z是 偶 函 数。,s h z c h z在z平 面 内 解 析,且,s h zc h zc h zs h z。(四)解析函数的概念1复变函数的导数1)点可导:0fz=000limzfzzfzz;2)区域可导:fz在区域内点点可导。2解析函数的概念1)点解析:fz在0z及其0z的邻域内可导,称fz在0z点解析;2)区域解析:fz在区域内每一点解析,称fz在区域内解析;3)若()f
12、z在0z点不解析,称0z为fz的奇点;3解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;(五)函数可导与解析的充要条件1函数可导的充要条件:,fzu x yiv x y在zxiy可导,u x y和,v x y在,x y可 微,且 在,x y处 满 足CD条 件:,uvuvxyyx此时,有uvfzixx。2函数解析的充要条件:,fzu x yiv x y在区域内解析,u x y和,v x y在,x y在D内 可 微,且 满 足CD条 件:文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5
13、A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10
14、L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 H
15、A6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8
16、C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 Z
17、G4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5
18、B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档
19、编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4名师精编优秀资料,uvuvxyyx;此时uvfzixx。注意:若,u x yv x y在区域D具有一阶连续偏导数,则,u x yv x y在区域D内是可微的。因此在使用充要条件证明时,只要能说明,u v具有一阶连续偏导且满足CR条件时,函数()f zuiv一定是可导或
20、解析的。3函数可导与解析的判别方法1)利用定义(题目要求用定义,如第二章习题1)2)利用充要条件(函数以,fzu x yiv x y形式给出,如第二章习题 2)3)利用可导或解析函数的四则运算定理。(函数fz是以z的形式给出,如第二章习题3)(六)复变函数积分的概念与性质1复变函数积分的概念:1limnkkcnkfz dzfz,c是光滑曲线。注:复变函数的积分实际是复平面上的线积分。2复变函数积分的性质1)1ccfz dzfz dz(1c与c的方向相反);2),cccfzg z dzfz dzg z dz是常数;3)若曲线c由1c与2c连接而成,则12cccfz dzfz dzfz dz。3复
21、变函数积分的一般计算法文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H
22、5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文
23、档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS
24、5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E1
25、0L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1 HA6B1D8C7M8 ZG4C4H5B8S4文档编码:CS5A10E10L8S1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 积分 变换 复习 重点
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内