复数十年高考题(带详细解析).pdf
《复数十年高考题(带详细解析).pdf》由会员分享,可在线阅读,更多相关《复数十年高考题(带详细解析).pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复数试题类编1.设复数 z1=1+i,z2=2321i,则 arg21zz等于()A.125B.125C.127D.12132.复数 z=iim212(mR,i 为虚数单位)在复平面上对应的点不可能位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如果(2,),那么复数(1i)(cos isin)的辐角的主值是()A.49B.4C.4D.474复数(2321i)3的值是()A.iB.iC.1 D.1 5.如图 121,与复平面中的阴影部分(含边界)对应的复数集合是()6.已知复数i62,则 argz1是()A.6B.611C.3D.35图 121 7.设复数z1 1i 在复平面上对应
2、向量1OZ,将1OZ按顺时针方向旋转65后得到向量2OZ,令2OZ对应的复数z2的辐角主值为,则 tan等于()A.23B.23C.23D.238.在复平面内,把复数33i 对应的向量按顺时针方向旋转3,所得向量对应的复数是()A.23B.23iC.33iD.3+3i9.复数 z)5sin5(cos3i(i 是虚数单位)的三角形式是()A.3cos(5)isin(5)B.3(cos5isin5)C.3(cos54isin54)D.3(cos56 isin56)10.复数 z13i,z21i,则 zz1z2在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.设复数 z
3、12sinicos(42)在复平面上对应向量1OZ,将1OZ按顺时针方向旋转43后得到向量2OZ,2OZ对应的复数为z2r(cosisin),则 tan等于()A.1tan2tan2B.1tan21tan2C.1tan21D.1tan21文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5
4、C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 H
5、N2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4
6、B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10
7、ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U
8、8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文
9、档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS
10、10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J212.复数 i 的一个立方根是i,它的另外两个立方根是()A.i2123B.i2123C.i2123D.i212313.复数54)31()22(ii等于()A.1+3iB.1+3iC.13iD.13i14.设复数 z=2321i(i 为虚数单位),则满足等式zn=z 且大于 1 的正整数 n 中最小的是()A.3 B.4 C.6 D.7 15.如果复数z 满足|z+i|+|zi|=2,那么|z+i+1|的最小值是()A.1 B.2C.2 D.5二、填空题16.已知 z为复数,则z+z2 的一个充要条件是z 满足.17.对于任
11、意两个复数z1x1 y1i,z2x2y2i(x1、y1、x2、y2为实数),定义运算“”为:z1z2x1x2 y1y2设非零复数w1、w2在复平面内对应的点分别为P1、P2,点 O 为坐标原点如果w1w20,那么在 P1OP2中,P1OP2的大小为18.若 zC,且(3z)i1(i 为虚数单位),则 z19.若复数 z满足方程zi=i1(i 是虚数单位),则 z=_.20.已知 a=ii213(i 是虚数单位),那么 a4=_.21.复数 z满足(1+2i)z=4+3i,那么 z=_.三、解答题22.已知 z、w 为复数,(13i)z 为纯虚数,wiz2,且|w|52,求 w文档编码:CS10
12、X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4
13、J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2
14、J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9
15、Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT
16、1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H
17、7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编
18、码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J223.已知复数z 1i,求实数 a,b 使 az 2bz(a2z)224.已知 z71(zC 且 z1).()证明1zz2z3z4z5z60;()设 z 的辐角为,求 coscos2co
19、s4的值.25.已知复数z1i(1i)3.()求 argz1及|z1|;()当复数z 满足|z|1,求|z z1|的最大值.文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z
20、10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1
21、U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7
22、J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码
23、:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X
24、3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J
25、6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J2文档编码:CS10X3G5C4J6 HN2J9J4B9Z10 ZT1U6U8H7J226.对任意一个非零复数z,定义集合Mz w
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复数 十年 考题 详细 解析
限制150内