6.2等差数列典型例题及详细解答.pdf
《6.2等差数列典型例题及详细解答.pdf》由会员分享,可在线阅读,更多相关《6.2等差数列典型例题及详细解答.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1等差数列的定义一般地,如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母_d_表示2等差数列的通项公式如果等差数列an 的首项为a1,公差为d,那么它的通项公式是ana1(n1)d.3等差中项如果Aab2,那么A叫做a与b的等差中项4等差数列的常用性质(1)通项公式的推广:anam(nm)d(n,mN*)(2)若an 为等差数列,且klmn(k,l,m,nN*),则akalaman.(3)若an 是等差数列,公差为d,则 a2n 也是等差数列,公差为2d.(4)若an,bn是等差数列,则panqbn也是等差数列(
2、5)若an 是等差数列,公差为d,则ak,akm,ak2m,(k,mN*)是公差为md的等差数列5等差数列的前n项和公式设等差数列 an的公差为d,其前n项和Snna1an2或Snna1nn12d.6等差数列的前n项和公式与函数的关系Snd2n2a1d2n.数列 an是等差数列?SnAn2Bn(A、B为常数)7等差数列的前n项和的最值在等差数列 an中,a10,d0,则Sn存在最 _大_值;若a10,则Sn存在最 _小_值【思考辨析】判断下面结论是否正确(请在括号中打“”或“”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列()(2)数列 an 为等差数列的充要
3、条件是对任意nN*,都有 2an1anan2.()(3)等差数列 an的单调性是由公差d决定的()(4)数列 an 为等差数列的充要条件是其通项公式为n的一次函数()(5)数列 an 满足an1ann,则数列 an 是等差数列()(6)已知数列 an 的通项公式是anpnq(其中p,q为常数),则数列 an 一定是等差数列()1(2015重庆)在等差数列 an中,若a24,a42,则a6等于()A 1 B 0 C 1 D 6答案B解析由等差数列的性质,得a62a4a222 40,选 B.2(2014福建)等差数列 an的前n项和为Sn,若a12,S3 12,则a6等于()A8 B 10 C 1
4、2 D 14答案C解析由题意知a12,由S3 3a1322d12,解得d2,所以a6a15d252 12,故选 C.3在等差数列an 中,已知a4a816,则该数列前11 项和S11等于()A58 B 88 C 143 D 176答案B解析S1111a1a11211a4a8288.4设数列 an是等差数列,若a3a4a5 12,则a1a2a7等于()A14 B 21 C 28 D 35答案C解析a3a4a53a412,a44,a1a2a7 7a428.5(2014北京)若等差数列 an满足a7a8a90,a7a100,则当n_时,an的前n项和最大答案8解析因为数列 an是等差数列,且a7a8
5、a93a80,所以a80.又a7a10a8a90,所以a9 0.故当n8 时,其前n项和最大题型一等差数列基本量的运算文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8
6、M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G
7、8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10
8、G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I1
9、0G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I
10、10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5
11、I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE
12、5I10G8M6L9 ZU10E6P8I3I2例 1(1)在数列 an中,若a1 2,且对任意的nN*有 2an112an,则数列 an 前 10 项的和为()A2 B 10 (2)已知在等差数列an 中,a27,a415,则前 10 项和S10等于()A100 B210C380 D400答案(1)C(2)B解析(1)由 2an 112an得an1an12,所以数列 an 是首项为 2,公差为12的等差数列,所以S1010(2)1010121252.(2)因为a27,a415,所以d4,a13,故S10103121094 210.思维升华(1)等差数列运算问题的一般求法是设出首项a1和公差d,
13、然后由通项公式或前n项和公式转化为方程(组)求解(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了方程的思想(1)(2015课标全国)设Sn是等差数列 an的前n项和,若a1a3a53,则S5等于()A5 B 7 C 9 D 11(2)已知等差数列 an 的前n项和为Sn,且满足S33S221,则数列 an 的公差是()B 1 C 2 D 3答案(1)A(2)C解析(1)an为等差数列,a1a52a3,a1a3a53a33,得a31,S55a1a525a35.故选 A.(2)Snna1an2,Snna1an2,又S33S221,得a1
14、a32a1a221,即a3a22,文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G
15、8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10
16、G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I1
17、0G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I
18、10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5
19、I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE
20、5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2数列 an的公差为2.题型二等差数列的
21、判定与证明例 2 已知数列 an 中,a135,an21an1(n2,nN*),数列 bn 满足bn1an 1(nN*)(1)求证:数列 bn 是等差数列;(2)求数列 an中的最大项和最小项,并说明理由(1)证明因为an21an1(n2,nN*),bn1an1(nN*),所以bn 1bn1an 1 11an1121an11an1anan11an11.又b11a1 152.所以数列 bn 是以52为首项,1 为公差的等差数列(2)解由(1)知bnn72,则an11bn122n7.设f(x)122x7,则f(x)在区间(,72)和(72,)上为减函数所以当n3 时,an取得最小值1,当n4 时,
22、an取得最大值3.引申探究例 2 中,若条件变为a135,nan1(n1)ann(n1),探求数列 an的通项公式解由已知可得an1n1ann1,即an 1n1ann 1,又a135,文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E
23、6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10
24、E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU1
25、0E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU10E6P8I3I2文档编码:CZ7G2C7D10P8 HE5I10G8M6L9 ZU
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.2 等差数列 典型 例题 详细 解答
限制150内